• Title/Summary/Keyword: Machine loads

Search Result 256, Processing Time 0.027 seconds

Matrix-based Filtering and Load-balancing Algorithm for Efficient Similarity Join Query Processing in Distributed Computing Environment (분산 컴퓨팅 환경에서 효율적인 유사 조인 질의 처리를 위한 행렬 기반 필터링 및 부하 분산 알고리즘)

  • Yang, Hyeon-Sik;Jang, Miyoung;Chang, Jae-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.667-680
    • /
    • 2016
  • As distributed computing platforms like Hadoop MapReduce have been developed, it is necessary to perform the conventional query processing techniques, which have been executed in a single computing machine, in distributed computing environments efficiently. Especially, studies on similarity join query processing in distributed computing environments have been done where similarity join means retrieving all data pairs with high similarity between given two data sets. But the existing similarity join query processing schemes for distributed computing environments have a problem of skewed computing load balance between clusters because they consider only the data transmission cost. In this paper, we propose Matrix-based Load-balancing Algorithm for efficient similarity join query processing in distributed computing environment. In order to uniform load balancing of clusters, the proposed algorithm estimates expected computing cost by using matrix and generates partitions based on the estimated cost. In addition, it can reduce computing loads by filtering out data which are not used in query processing in clusters. Finally, it is shown from our performance evaluation that the proposed algorithm is better on query processing performance than the existing one.

The Mechanical Effect of Rod Contouring on Rod-Screw System Strength in Spine Fixation

  • Acar, Nihat;Karakasli, Ahmet;Karaarslan, Ahmet A.;Ozcanhan, Mehmet Hilal;Ertem, Fatih;Erduran, Mehmet
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.5
    • /
    • pp.425-429
    • /
    • 2016
  • Objective : Rod-screw fixation systems are widely used for spinal instrumentation. Although many biomechanical studies on rod-screw systems have been carried out, but the effects of rod contouring on the construct strength is still not very well defined in the literature. This work examines the mechanical impact of straight, $20^{\circ}$ kyphotic, and $20^{\circ}$ lordotic rod contouring on rod-screw fixation systems, by forming a corpectomy model. Methods : The corpectomy groups were prepared using ultra-high molecular weight polyethylene samples. Non-destructive loads were applied during flexion/extension and torsion testing. Spine-loading conditions were simulated by load subjections of 100 N with a velocity of $5mm\;min^{-1}$, to ensure 8.4-Nm moment. For torsional loading, the corpectomy models were subjected to rotational displacement of $0.5^{\circ}\;s^{-1}$ to an end point of $5.0^{\circ}$, in a torsion testing machine. Results : Under both flexion and extension loading conditions the stiffness values for the lordotic rod-screw system were the highest. Under torsional loading conditions, the lordotic rod-screw system exhibited the highest torsional rigidity. Conclusion : We concluded that the lordotic rod-screw system was the most rigid among the systems tested and the risk of rod and screw failure is much higher in the kyphotic rod-screw systems. Further biomechanical studies should be attempted to compare between different rod kyphotic angles to minimize the kyphotic rod failure rate and to offer a more stable and rigid rod-screw construct models for surgical application in the kyphotic vertebrae.

Small Agricultural Skid-steer Loader Using Belt Clutch Power Transmission (벨트클러치 전동방식의 농업용 소형 스키드 스티어 로더)

  • 김상헌;신범수;정준모;김창식
    • Journal of Biosystems Engineering
    • /
    • v.21 no.2
    • /
    • pp.134-145
    • /
    • 1996
  • Since the skid-steer loader is able to work for excavating, lifting and transporting load even at the narrow space, they are widely used in the regular farm and the livestock farm. The skid-steer loader normally adopts the hydrostatic transmission because the power to move the machine backward and forward should be delivered independently on both sides of wheels. Contrast to the mechanical system such as chain and belt transmissions, however, the hydrostatic transmission is less efficient in the use of energy and more difficult in the maintenance. This study was intended to investigate the feasibility of using triangular-type belt clutch and V-belt transmission for the newly developed skid-steer loader in order to overcome the problems stated in the hydrostatic transmission. In the developed triangular-type belt clutch, the centers of driving, driven and idler sheaves are arranged in the triangular shape in a plane, and V-belts were loaded loosely on three sheaves. The power is transmitted by pressing the idler connected to a lever on the loosened V-belt. Contrast to the normal belt clutch using two sheaves, the newly developed belt clutch has the characteristics of small contact-angle of the driving sheave at no bucket load and increasing contact-angle at the time of power transmission. The results of research can be summarized as follows: 1) The developed triangular-type belt clutch adopted a spring-loaded slackside idler which could transmit more power than a fixed idler could by sacrificing the belt life. The life of V-belt used in the power transmission reached at 500 hours(6 months) when the engine power of 11.8 ㎾ was transmitted. Also, it was feasible to develop the large industrial skid-loader with the V-belt transmission by using the proper set of sheaves. 2) The developed skid-steer loader changed the rotating radius and speed with bucket loads as the conventional skid steer loader did. The rotating speed was 47 deg/s at the maximum bucket load of 2.74 kN when the minimum rotating radius was 1.5m. 3) The power required in turning at the bucket load of 2.74 kN was 4 ㎾ and the slippage of V-belt was less than 1%.

  • PDF

A Study on the Wear Characteristics of Compound Layers Formed during Gaseous Nitrocarburizing in Medium Carbon Boron Steels (중탄소 Boron강의 가스침질탄화처리에 의해 형성된 화합물층의 마모특성에 관한 연구)

  • Park, K.W.;Oh, D.W.;Cho, H.S.;Lee, H.W.;Lee, J.B.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.2
    • /
    • pp.136-144
    • /
    • 1999
  • The study on the wear characteristics of compound layers formed during gaseous nitrocarburising in the medium carbon boron steels and the plain carbon steel has been carried out by using a pin-on-disc type wear test machine under the oil lubricating condition at room temperature and by varying applied loads, sliding speeds and wear distances. Values of friction coefficient measured at the sliding speed of 0.4m/sec under the oil lubricating condition have been shown to decrease considerably with increasing applied load and become gradually a constant value as load is increased to a higher value, showing that the transition load for friction coefficient appears at an applied load of 247.2N. The length and volume wear rates of compound layer have been revealed to relatively constantly increase, also showing that the wear life per unit thickness of compound layer turns out to be superior as porous layer has a denser and thinner appearance. As the sliding speed increases during wear test performed by varying sliding speed at a load of 63.2N under the oil lubricating condition for medium carbon boron steel nitrocarburised in gas atmosphere, the wear rate has been found to increase, the friction coefficient to decrease and the wear life per unit thickness of compound layer to decrease considerably.

  • PDF

New Micropolymer Technologies for Increased Drainage and Retention for both Wood and Non-Wood Containing Furnishes (목질 및 비목질 함유 지료의 탈수속도와 보류향상을 위한 새로운 마이크로폴리머 기술)

  • Lewis, Christopher;Polverari, Marco
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.05a
    • /
    • pp.1-46
    • /
    • 2008
  • The ability to control filler performance and fines retention is vital in the development of both filled and non filled grades, respectively. This is very important when achieving the desired sheet structure necessary to maximize machine performance and end user demands. A narrow balance exists in attaining the desired retention and formation particularly in systems with heavier ash loads and producing paper and paper board on higher speed high shear equipment. A new generation of both cationic and anionic micropolymer technologies has been developed. These water based chemistries are volatile organic compound (VOC) and alkyphenol ethoxylate (APE) free. When these novel micropolymers are applied with linear poly-acrylamide or in conjunction with inorganic microparticle technologies (such as silica or swellable minerals), substantial increases in drainage, fibre retention and ash retention are observed. These improvements have been observed not only in high filled wood and non wood containing grades such as fine paper and super calendared sheets (SCA), but also in low filled newsprint grades. Of particular note is the drainage improvement seen with the application of the cationic micropolymers in unbleached packaging grades with poly-acrylamide.

  • PDF

Development of production planning model for women′s wear manufacturer - focused on the changing style numbers and lot size - (생산 품목과 생산량의 변화에 적용가능한 여성복 생산라인 설계 모델에 관한 연구)

  • 박상희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.11
    • /
    • pp.1582-1592
    • /
    • 2002
  • The purpose of this study is to suggest production planning model for women's apparel manufacturer, which are relevant to the situation of Korean clothing industry. The research was based on simulation method. The basic model for the simulation was developed based on the empirical data from six production fm. After verifying the basic model, low alternative production plans went through trial run. In order to suggest the application of these alternative production plans for various style numbers and lot sizes, the simulation results were compared in terms of product efficiency and product cost. The four alternative plans were as follows: 1. The first alternative was to spread out work loads among workers in order to resolve bottlenecks in work flow. So this was suited to manufacturers that had constant production without regard to changing seasons. 2. The second alternative was to merge the skirt and trouser production, which require less work load, in one line. In this line, a few machine was justified by production improvement. It was suited to cases which producted various style suits. The third and fourth alternative were using another subcontractor for assembling inner shell garments. These was compatible in manufacturers which had to product more styles and sizes of trousers and skirts than those of upper garments. 3. The third alternative was to reassign the same workers in production line. Thus, production was increased. 4. The fourth alternative was to except two worker in production line, so expenses of worker's wage was decreased. The four alternatives could be one of the cost effective manufacturing plans according to manufacturer situations.

Mechanical analysis of conventional and small diameter conical implant abutments

  • Moris, Izabela Cristina Mauricio;Faria, Adriana Claudia Lapria;De Mattos, Maria Da Gloria Chiarello;Ribeiro, Ricardo Faria;Rodrigues, Renata Cristina Silveira
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.3
    • /
    • pp.158-161
    • /
    • 2012
  • PURPOSE. The aim of the present study was to evaluate if a smaller morse taper abutment has a negative effect on the fracture resistance of implant-abutment connections under oblique compressive loads compared to a conventional abutment. MATERIALS AND METHODS. Twenty morse taper conventional abutments (4.8 mm diameter) and smaller abutments (3.8 mm diameter) were tightened (20 Ncm) to their respective implants ($3.5{\times}11$ mm) and after a 10 minute interval, implant/abutment assemblies were subjected to static compressive test, performed in a universal test machine with 1 mm/min displacement, at $45^{\circ}$ inclination. The maximum deformation force was determined. Data were statistically analyzed by student t test. RESULTS. Maximum deformation force of 4.8 mm and 3.8 mm abutments was approximately 95.33 kgf and 95.25 kgf, respectively, but no fractures were noted after mechanical test. Statistical analysis demonstrated that the evaluated abutments were statistically similar (P=.230). CONCLUSION. Abutment measuring 3.8 mm in diameter (reduced) presented mechanical properties similar to 4.8 mm (conventional) abutments, enabling its clinical use as indicated.

The Effect of Etching Time on the Biaxial Flexural Strength of IPS Empress® 2 Ceramic (불산 처리 시간이 IPS Empress® 2 세라믹의 2축 굴곡강도에 미치는 영향에 대한 연구)

  • Kim, Youn-Hwi;Shin, Soo-Yeon;Cho, In-Ho;Lee, Joon-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.4
    • /
    • pp.269-281
    • /
    • 2007
  • Fluoric acid etching is an essential procedure in cementation of reinforced ceramics to tooth surface. But there have been few studies about the changes of surface structure and flexural strength of IPS $Empress^{(R)}$ 2 ceramic according to the etching time. The objectives of this study were to examine the surface structure changes and the difference in biaxial flexural strength of IPS $Empress^{(R)}$ 2 ceramic according to various etching times. Sixty one disk-shaped specimens of IPS $Empress^{(R)}$ 2 ceramic($14mm{\times}1.2mm$) were fabricated for the biaxial flexural strength test and SEM analysis according to the manufacturer's recommendations. Sixty specimens were divided into 6 groups(n=10) according to the time of HF acid etching(0, 20, 180 and 300s)and silane/resin cement application. Each disk was loaded using a piston-on-3 ball biaxial configuration in a universal testing machine. The failure loads(N) were recorded, and the biaxial flexural strength for each disk was calculated. A one-way analysis of variance and independent t-test on transformed fracture strength data were used to determine significant differences between groups. The groups of no cementation showed a trend toward progressive weakening with increasing the etching time. However, this was not statistically significant at p=0.05 level. The groups of resin cementation exhibited no apparent trend in their mean strength values. SEM photomicrographs showed very different results of etching. Within the conditions of this study, alteration of surface topography by acid etching does not have a deleterious effect on the biaxial flexural strength of IPS $Empress^{(R)}$ 2 ceramic.

Study on the Thermal and Dynamic Behaviors of Air Spring for vibration isolation of LCD panel inspecting machine connected with an External Chamber through a flexible tube: PART I, Theoretical Modeling (외부챔버와 유연한 튜브로 연결된 LCD 패널 검사기 방진용 공기 스프링의 열 및 동적 연성거동에 대한 연구: PART I, 이론적 모델링)

  • Seok, Jong-Won;Lee, Ju-Hong;Kim, Pil-Kee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • Due to the recent quantum leaps forward in bio-, nano-, and information-technologies (BT, NT and IT), the precisionization and miniaturization of mechanical and electrical components are in high demand. In particular, the ITrelated equipments that take a great part in our domestic industry are in the area requiring high precision technologies. As a consequence, the researches on the development vibration isolation systems that diminish external disturbance or internal vibration are highly required. Among the components comprising the vibration isolation system, air spring has become on a focal point for the researchers due to its merits. This air spring is able to support heavy loads, keep a low natural frequency despite of having a lower value of stiffness, and control the performance of vibration isolation. However, sometimes the sole use of air spring is in demand due to some economic reasons. Under this circumstance, the damping effect of sole air spring may not enough to reduce sufficient amount of vibration. In this study, the air spring mount system connecting with an external chamber is proposed to increase or control the damping effect. To investigate its damping mechanism, the thermal and dynamic behaviors of the system is examined through a theoretical modeling approach in this part of research. In this approach, thermomechanical and Helmholtz resonator type models are to be employed for the air spring/external chambers and connecting tube system, respectively. The frequency response functions (FRFs) derived from the modeling effort are evaluated with physical parametric values and the effects of connecting tube length on these FRFs are identified through computer simulations.

A STUDY ON THE SHEAR BOND STRENGTH OF THE PORCELAIN LAMINATE ACCORDING TO SURFACE ROUGHNESS OF THE CUT ENAMEL (삭제된 법랑질의 표면거칠기에 따른 도재 라미네이트의 전단결합강도에 관한 연구)

  • Park, Bong-Seok;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.159-168
    • /
    • 1994
  • The purpose of this study was to evaluate the shear bond strength of the porcelain laminate specimens according to the surface roughness of the cut enamel of human anterior teeth. Flat enamel surfaces were prepared in 30 extracted human anterior teeth with diamond disc which were divided into two groups. Group 1 Coarse enamel surface group prepared with LVS-3 bur. Group 2 Fine enamel surface group prepared with superfine diamond bur. 30 teeth specimens of two group were stored in normal saline during 24 hours. 30 disk - type porcelain laminate specimens with diameter 4mm and thickness 1mm were made and sand - blasted on internal surface which were to cemented on enamel surface. Porcelain laminate specimens were cemented on enamel surface with Choice Veneer System (Bisco Dental, U.S.A) according to manufacture's instructions. All teeth specimens of two groups were manipulated with same method and stored In normal saline before testing. An Universal Testing machine (Model No.UTM-4206,Instron, U.S.A) was used to apply shear loads in the vertical directed, and the force required for separation was recorded with a cross head speed of 3mm/min and 500kg in full scale. The results were as follow ; 1. The mean shear bond strength of coarse surface group was 36.30kg and that of fine surface group was 44.39 kg, but there was no significant difference in breaking strength of two groups(p>0.05).

  • PDF