• 제목/요약/키워드: Machine learning and Long short-term memory

검색결과 140건 처리시간 0.024초

The roles of differencing and dimension reduction in machine learning forecasting of employment level using the FRED big data

  • Choi, Ji-Eun;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • 제26권5호
    • /
    • pp.497-506
    • /
    • 2019
  • Forecasting the U.S. employment level is made using machine learning methods of the artificial neural network: deep neural network, long short term memory (LSTM), gated recurrent unit (GRU). We consider the big data of the federal reserve economic data among which 105 important macroeconomic variables chosen by McCracken and Ng (Journal of Business and Economic Statistics, 34, 574-589, 2016) are considered as predictors. We investigate the influence of the two statistical issues of the dimension reduction and time series differencing on the machine learning forecast. An out-of-sample forecast comparison shows that (LSTM, GRU) with differencing performs better than the autoregressive model and the dimension reduction improves long-term forecasts and some short-term forecasts.

A SE Approach for Machine Learning Prediction of the Response of an NPP Undergoing CEA Ejection Accident

  • Ditsietsi Malale;Aya Diab
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.18-31
    • /
    • 2023
  • Exploring artificial intelligence and machine learning for nuclear safety has witnessed increased interest in recent years. To contribute to this area of research, a machine learning model capable of accurately predicting nuclear power plant response with minimal computational cost is proposed. To develop a robust machine learning model, the Best Estimate Plus Uncertainty (BEPU) approach was used to generate a database to train three models and select the best of the three. The BEPU analysis was performed by coupling Dakota platform with the best estimate thermal hydraulics code RELAP/SCDAPSIM/MOD 3.4. The Code Scaling Applicability and Uncertainty approach was adopted, along with Wilks' theorem to obtain a statistically representative sample that satisfies the USNRC 95/95 rule with 95% probability and 95% confidence level. The generated database was used to train three models based on Recurrent Neural Networks; specifically, Long Short-Term Memory, Gated Recurrent Unit, and a hybrid model with Long Short-Term Memory coupled to Convolutional Neural Network. In this paper, the System Engineering approach was utilized to identify requirements, stakeholders, and functional and physical architecture to develop this project and ensure success in verification and validation activities necessary to ensure the efficient development of ML meta-models capable of predicting of the nuclear power plant response.

FORECASTING GOLD FUTURES PRICES CONSIDERING THE BENCHMARK INTEREST RATES

  • Lee, Donghui;Kim, Donghyun;Yoon, Ji-Hun
    • 충청수학회지
    • /
    • 제34권2호
    • /
    • pp.157-168
    • /
    • 2021
  • This study uses the benchmark interest rate of the Federal Open Market Committee (FOMC) to predict gold futures prices. For the predictions, we used the support vector machine (SVM) (a machine-learning model) and the long short-term memory (LSTM) deep-learning model. We found that the LSTM method is more accurate than the SVM method. Moreover, we applied the Boruta algorithm to demonstrate that the FOMC benchmark interest rates correlate with gold futures.

Optimizing Artificial Neural Network-Based Models to Predict Rice Blast Epidemics in Korea

  • Lee, Kyung-Tae;Han, Juhyeong;Kim, Kwang-Hyung
    • The Plant Pathology Journal
    • /
    • 제38권4호
    • /
    • pp.395-402
    • /
    • 2022
  • To predict rice blast, many machine learning methods have been proposed. As the quality and quantity of input data are essential for machine learning techniques, this study develops three artificial neural network (ANN)-based rice blast prediction models by combining two ANN models, the feed-forward neural network (FFNN) and long short-term memory, with diverse input datasets, and compares their performance. The Blast_Weathe long short-term memory r_FFNN model had the highest recall score (66.3%) for rice blast prediction. This model requires two types of input data: blast occurrence data for the last 3 years and weather data (daily maximum temperature, relative humidity, and precipitation) between January and July of the prediction year. This study showed that the performance of an ANN-based disease prediction model was improved by applying suitable machine learning techniques together with the optimization of hyperparameter tuning involving input data. Moreover, we highlight the importance of the systematic collection of long-term disease data.

Fuel Consumption Prediction and Life Cycle History Management System Using Historical Data of Agricultural Machinery

  • Jung Seung Lee;Soo Kyung Kim
    • Journal of Information Technology Applications and Management
    • /
    • 제29권5호
    • /
    • pp.27-37
    • /
    • 2022
  • This study intends to link agricultural machine history data with related organizations or collect them through IoT sensors, receive input from agricultural machine users and managers, and analyze them through AI algorithms. Through this, the goal is to track and manage the history data throughout all stages of production, purchase, operation, and disposal of agricultural machinery. First, LSTM (Long Short-Term Memory) is used to estimate oil consumption and recommend maintenance from historical data of agricultural machines such as tractors and combines, and C-LSTM (Convolution Long Short-Term Memory) is used to diagnose and determine failures. Memory) to build a deep learning algorithm. Second, in order to collect historical data of agricultural machinery, IoT sensors including GPS module, gyro sensor, acceleration sensor, and temperature and humidity sensor are attached to agricultural machinery to automatically collect data. Third, event-type data such as agricultural machine production, purchase, and disposal are automatically collected from related organizations to design an interface that can integrate the entire life cycle history data and collect data through this.

Supervised learning-based DDoS attacks detection: Tuning hyperparameters

  • Kim, Meejoung
    • ETRI Journal
    • /
    • 제41권5호
    • /
    • pp.560-573
    • /
    • 2019
  • Two supervised learning algorithms, a basic neural network and a long short-term memory recurrent neural network, are applied to traffic including DDoS attacks. The joint effects of preprocessing methods and hyperparameters for machine learning on performance are investigated. Values representing attack characteristics are extracted from datasets and preprocessed by two methods. Binary classification and two optimizers are used. Some hyperparameters are obtained exhaustively for fast and accurate detection, while others are fixed with constants to account for performance and data characteristics. An experiment is performed via TensorFlow on three traffic datasets. Three scenarios are considered to investigate the effects of learning former traffic on sequential traffic analysis and the effects of learning one dataset on application to another dataset, and determine whether the algorithms can be used for recent attack traffic. Experimental results show that the used preprocessing methods, neural network architectures and hyperparameters, and the optimizers are appropriate for DDoS attack detection. The obtained results provide a criterion for the detection accuracy of attacks.

Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea

  • Lim, Heesung;An, Hyunuk;Choi, Eunhyuk;Kim, Yeonsu
    • 농업과학연구
    • /
    • 제47권4호
    • /
    • pp.1029-1037
    • /
    • 2020
  • The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.

Forecasting Fish Import Using Deep Learning: A Comprehensive Analysis of Two Different Fish Varieties in South Korea

  • Abhishek Chaudhary;Sunoh Choi
    • 스마트미디어저널
    • /
    • 제12권11호
    • /
    • pp.134-144
    • /
    • 2023
  • Nowadays, Deep Learning (DL) technology is being used in several government departments. South Korea imports a lot of seafood. If the demand for fishery products is not accurately predicted, then there will be a shortage of fishery products and the price of the fishery product may rise sharply. So, South Korea's Ministry of Ocean and Fisheries is attempting to accurately predict seafood imports using deep learning. This paper introduces the solution for the fish import prediction in South Korea using the Long Short-Term Memory (LSTM) method. It was found that there was a huge gap between the sum of consumption and export against the sum of production especially in the case of two species that are Hairtail and Pollock. An import prediction is suggested in this research to fill the gap with some advanced Deep Learning methods. This research focuses on import prediction using Machine Learning (ML) and Deep Learning methods to predict the import amount more precisely. For the prediction, two Deep Learning methods were chosen which are Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM). Moreover, the Machine Learning method was also selected for the comparison between the DL and ML. Root Mean Square Error (RMSE) was selected for the error measurement which shows the difference between the predicted and actual values. The results obtained were compared with the average RMSE scores and in terms of percentage. It was found that the LSTM has the lowest RMSE score which showed the prediction with higher accuracy. Meanwhile, ML's RMSE score was higher which shows lower accuracy in prediction. Moreover, Google Trend Search data was used as a new feature to find its impact on prediction outcomes. It was found that it had a positive impact on results as the RMSE values were lowered, increasing the accuracy of the prediction.

타이타늄 압연재의 기계학습 기반 극저온/상온 변형거동 예측 (Prediction of Cryogenic- and Room-Temperature Deformation Behavior of Rolled Titanium using Machine Learning)

  • 천세호;유진영;이성호;이민수;전태성;이태경
    • 소성∙가공
    • /
    • 제32권2호
    • /
    • pp.74-80
    • /
    • 2023
  • A deformation behavior of commercially pure titanium (CP-Ti) is highly dependent on material and processing parameters, such as deformation temperature, deformation direction, and strain rate. This study aims to predict the multivariable and nonlinear tensile behavior of CP-Ti using machine learning based on three algorithms: artificial neural network (ANN), light gradient boosting machine (LGBM), and long short-term memory (LSTM). The predictivity for tensile behaviors at the cryogenic temperature was lower than those in the room temperature due to the larger data scattering in the train dataset used in the machine learning. Although LGBM showed the lowest value of root mean squared error, it was not the best strategy owing to the overfitting and step-function morphology different from the actual data. LSTM performed the best as it effectively learned the continuous characteristics of a flow curve as well as it spent the reduced time for machine learning, even without sufficient database and hyperparameter tuning.

LSTM-VAE를 활용한 기계시설물 장치의 이상 탐지 시스템 (Anomaly Detection System in Mechanical Facility Equipment: Using Long Short-Term Memory Variational Autoencoder)

  • 서재홍;박준성;유준우;박희준
    • 품질경영학회지
    • /
    • 제49권4호
    • /
    • pp.581-594
    • /
    • 2021
  • Purpose: The purpose of this study is to compare machine learning models for anomaly detection of mechanical facility equipment and suggest an anomaly detection system for mechanical facility equipment in subway stations. It helps to predict failures and plan the maintenance of facility. Ultimately it aims to improve the quality of facility equipment. Methods: The data collected from Daejeon Metropolitan Rapid Transit Corporation was used in this experiment. The experiment was performed using Python, Scikit-learn, tensorflow 2.0 for preprocessing and machine learning. Also it was conducted in two failure states of the equipment. We compared and analyzed five unsupervised machine learning models focused on model Long Short-Term Memory Variational Autoencoder(LSTM-VAE). Results: In both experiments, change in vibration and current data was observed when there is a defect. When the rotating body failure was happened, the magnitude of vibration has increased but current has decreased. In situation of axis alignment failure, both of vibration and current have increased. In addition, model LSTM-VAE showed superior accuracy than the other four base-line models. Conclusion: According to the results, model LSTM-VAE showed outstanding performance with more than 97% of accuracy in the experiments. Thus, the quality of mechanical facility equipment will be improved if the proposed anomaly detection system is established with this model used.