• Title/Summary/Keyword: Machine data analysis

Search Result 2,229, Processing Time 0.035 seconds

An Approach to Applying Multiple Linear Regression Models by Interlacing Data in Classifying Similar Software

  • Lim, Hyun-il
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.268-281
    • /
    • 2022
  • The development of information technology is bringing many changes to everyday life, and machine learning can be used as a technique to solve a wide range of real-world problems. Analysis and utilization of data are essential processes in applying machine learning to real-world problems. As a method of processing data in machine learning, we propose an approach based on applying multiple linear regression models by interlacing data to the task of classifying similar software. Linear regression is widely used in estimation problems to model the relationship between input and output data. In our approach, multiple linear regression models are generated by training on interlaced feature data. A combination of these multiple models is then used as the prediction model for classifying similar software. Experiments are performed to evaluate the proposed approach as compared to conventional linear regression, and the experimental results show that the proposed method classifies similar software more accurately than the conventional model. We anticipate the proposed approach to be applied to various kinds of classification problems to improve the accuracy of conventional linear regression.

Recent advances in deep learning-based side-channel analysis

  • Jin, Sunghyun;Kim, Suhri;Kim, HeeSeok;Hong, Seokhie
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.292-304
    • /
    • 2020
  • As side-channel analysis and machine learning algorithms share the same objective of classifying data, numerous studies have been proposed for adapting machine learning to side-channel analysis. However, a drawback of machine learning algorithms is that their performance depends on human engineering. Therefore, recent studies in the field focus on exploiting deep learning algorithms, which can extract features automatically from data. In this study, we survey recent advances in deep learning-based side-channel analysis. In particular, we outline how deep learning is applied to side-channel analysis, based on deep learning architectures and application methods. Furthermore, we describe its properties when using different architectures and application methods. Finally, we discuss our perspective on future research directions in this field.

TECHNOLOGY GAP APPROACH TO A DYNAMIC CHANGE M WORLD MACHINE TOOL MARKETS : A PANEL DATA ANALYSIS

  • Lee, Kong-Rae;Suh, Joong-Hae
    • Proceedings of the Technology Innovation Conference
    • /
    • 1996.12a
    • /
    • pp.154-178
    • /
    • 1996
  • This paper applies the technology-gap trade theory to explaining radical changes in the competitive positions of countries in world machine tool markets over the last three decades. It develops the notion that the innovation gaps in machine tools among countries led to the inter-country differences in the competitive performance in the sector as well as in its user sectors. Since competitive advantage largely depends on a capability to improve, create and apply technology to market competition, a higher innovative performance in one country than another is closely related to a higher innovative performance. A higher innovative performance in machine tools is also associated with a higher competitive performance of the large areas of its user sectors, due to sectoral interdependences and externalities generated by machine tool innovations. The results of empirical investigation through a panel data analysis show that the international gaps in machine tool innovations appeared to have a positive significant relationship with the differences in the export performance of both the machine tool sector and its user sector across countries.

  • PDF

Big Data Analysis and Prediction of Traffic in Los Angeles

  • Dauletbak, Dalyapraz;Woo, Jongwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.841-854
    • /
    • 2020
  • The paper explains the method to process, analyze and predict traffic patterns in Los Angeles county using Big Data and Machine Learning. The dataset is used from a popular navigating platform in the USA, which tracks information on the road using connected users' devices and also collects reports shared by the users through the app. The dataset mainly consists of information about traffic jams and traffic incidents reported by users, such as road closure, hazards, accidents. The major contribution of this paper is to give a clear view of how the large-scale road traffic data can be stored and processed using the Big Data system - Hadoop and its ecosystem (Hive). In addition, analysis is explained with the help of visuals using Business Intelligence and prediction with classification machine learning model on the sampled traffic data is presented using Azure ML. The process of modeling, as well as results, are interpreted using metrics: accuracy, precision and recall.

Iowa Liquor Sales Data Predictive Analysis Using Spark

  • Ankita Paul;Shuvadeep Kundu;Jongwook Woo
    • Asia pacific journal of information systems
    • /
    • v.31 no.2
    • /
    • pp.185-196
    • /
    • 2021
  • The paper aims to analyze and predict sales of liquor in the state of Iowa by applying machine learning algorithms to models built for prediction. We have taken recourse of Azure ML and Spark ML for our predictive analysis, which is legacy machine learning (ML) systems and Big Data ML, respectively. We have worked on the Iowa liquor sales dataset comprising of records from 2012 to 2019 in 24 columns and approximately 1.8 million rows. We have concluded by comparing the models with different algorithms applied and their accuracy in predicting the sales using both Azure ML and Spark ML. We find that the Linear Regression model has the highest precision and Decision Forest Regression has the fastest computing time with the sample data set using the legacy Azure ML systems. Decision Tree Regression model in Spark ML has the highest accuracy with the quickest computing time for the entire data set using the Big Data Spark systems.

A study on the Experimental Evaluation for the Cam Profile CNC Grinding Machine using Vibration Signals (진동 신호를 이용한 캠 프로파일 CNC 연삭기의 실험적 평가에 관한 연구)

  • Lee Choon Man;Lim Sang Heon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.288-293
    • /
    • 2005
  • A earn profile grinding machine is a mandatory machine tool for manufacture of high precision contoured cam. Experimental evaluation of modal analysis is an effective tool to investigate dynamic behavior of a machine. This paper presents the measurement system and experimental investigation on the modal analysis of a grinding machine. The weak part of the machine is found by the experimental evaluation. The results provide structure modification data for good dynamic behaviors. And safety of the machine was confirmed by the modal analysis of modified machine design. Finally, the cam profile grinding machine was successfully developed.

  • PDF

Design of Disease Prediction Algorithm Applying Machine Learning Time Series Prediction

  • Hye-Kyeong Ko
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.321-328
    • /
    • 2024
  • This paper designs a disease prediction algorithm to diagnose migraine among the types of diseases in advance by learning algorithms using machine learning-based time series analysis. This study utilizes patient data statistics, such as electroencephalogram activity, to design a prediction algorithm to determine the onset signals of migraine symptoms, so that patients can efficiently predict and manage their disease. The results of the study evaluate how accurate the proposed prediction algorithm is in predicting migraine and how quickly it can predict the onset of migraine for disease prevention purposes. In this paper, a machine learning algorithm is used to analyze time series of data indicators used for migraine identification. We designed an algorithm that can efficiently predict and manage patients' diseases by quickly determining the onset signaling symptoms of disease development using existing patient data as input. The experimental results show that the proposed prediction algorithm can accurately predict the occurrence of migraine using machine learning algorithms.

Machine Learning Frameworks for Automated Software Testing Tools : A Study

  • Kim, Jungho;Ryu, Joung Woo;Shin, Hyun-Jeong;Song, Jin-Hee
    • International Journal of Contents
    • /
    • v.13 no.1
    • /
    • pp.38-44
    • /
    • 2017
  • Increased use of software and complexity of software functions, as well as shortened software quality evaluation periods, have increased the importance and necessity for automation of software testing. Automating software testing by using machine learning not only minimizes errors in manual testing, but also allows a speedier evaluation. Research on machine learning in automated software testing has so far focused on solving special problems with algorithms, leading to difficulties for the software developers and testers, in applying machine learning to software testing automation. This paper, proposes a new machine learning framework for software testing automation through related studies. To maximize the performance of software testing, we analyzed and categorized the machine learning algorithms applicable to each software test phase, including the diverse data that can be used in the algorithms. We believe that our framework allows software developers or testers to choose a machine learning algorithm suitable for their purpose.

Comparative Analysis of Machine Learning Algorithms for Healthy Management of Collaborative Robots (협동로봇의 건전성 관리를 위한 머신러닝 알고리즘의 비교 분석)

  • Kim, Jae-Eun;Jang, Gil-Sang;Lim, KuK-Hwa
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.93-104
    • /
    • 2021
  • In this paper, we propose a method for diagnosing overload and working load of collaborative robots through performance analysis of machine learning algorithms. To this end, an experiment was conducted to perform pick & place operation while changing the payload weight of a cooperative robot with a payload capacity of 10 kg. In this experiment, motor torque, position, and speed data generated from the robot controller were collected, and as a result of t-test and f-test, different characteristics were found for each weight based on a payload of 10 kg. In addition, to predict overload and working load from the collected data, machine learning algorithms such as Neural Network, Decision Tree, Random Forest, and Gradient Boosting models were used for experiments. As a result of the experiment, the neural network with more than 99.6% of explanatory power showed the best performance in prediction and classification. The practical contribution of the proposed study is that it suggests a method to collect data required for analysis from the robot without attaching additional sensors to the collaborative robot and the usefulness of a machine learning algorithm for diagnosing robot overload and working load.

Security tendency analysis techniques through machine learning algorithms applications in big data environments (빅데이터 환경에서 기계학습 알고리즘 응용을 통한 보안 성향 분석 기법)

  • Choi, Do-Hyeon;Park, Jung-Oh
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.269-276
    • /
    • 2015
  • Recently, with the activation of the industry related to the big data, the global security companies have expanded their scopes from structured to unstructured data for the intelligent security threat monitoring and prevention, and they show the trend to utilize the technique of user's tendency analysis for security prevention. This is because the information scope that can be deducted from the existing structured data(Quantify existing available data) analysis is limited. This study is to utilize the analysis of security tendency(Items classified purpose distinction, positive, negative judgment, key analysis of keyword relevance) applying the machine learning algorithm($Na{\ddot{i}}ve$ Bayes, Decision Tree, K-nearest neighbor, Apriori) in the big data environment. Upon the capability analysis, it was confirmed that the security items and specific indexes for the decision of security tendency could be extracted from structured and unstructured data.