
292  |  	﻿� ETRI Journal. 2020;42(2):292–304.wileyonlinelibrary.com/journal/etrij

1  |   INTRODUCTION

Experts estimate that the explosive growth of the Internet
of Things (IoT) introduces not only a new dimension to in-
formation and communication technology but also difficult
problems regarding security. As IoT devices tend to handle
personal data, potential attacks must be considered when
securing these devices. Side-channel analysis (SCA) is the
most representative attack among potential attacks. SCA is a
technique for unveiling secret information based on analyzing
the data obtained from the execution of an algorithm, rather
than the algorithm itself [1‒3]. We shall refer to such data
as leakages, and examples of leakages include time, power
consumption, and electromagnetic emission.

The ultimate objective of SCA is to reveal the secret key
of a device. This analysis is performed by exploiting the re-
lations between leakages obtained during the execution of an

algorithm and a secret key. An attacker collects leakages and
analyzes them using specific models and appropriate met-
rics to determine the secret key. In this regard, SCA could be
transformed into a classification problem. Machine learning
models are mathematical functions that find patterns in data.
As classifying the given data is an essential application of ma-
chine learning, machine learning techniques can be adapted
to SCA. A drawback is that machine learning requires human
engineering in some manner for better performance.

Deep learning is a subset of machine learning that has
been studied since the mid-1990s. It can extract features
automatically from input data. Deep learning did not gain
considerable attention when it was first proposed, owing to
insufficient performance caused by a lack of computing pow-
ers and training data. In the last decade, the gradual enhance-
ment of computing power and the advent of big data have
led to vast improvements in deep learning algorithms. Recent

Received: 28 March 2019  |  Revised: 1 July 2019  |  Accepted: 29 July 2019

DOI: 10.4218/etrij.2019-0163

O R I G I N A L A R T I C L E

Recent advances in deep learning-based side-channel analysis

Sunghyun Jin1,2   | Suhri Kim1,2  | HeeSeok Kim3  | Seokhie Hong1,2

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2020 ETRI

1School of Cyber Security, Korea
University, Seoul, Rep. of Korea
2Center for Information Security
Technologies, Institute of Cyber Security
and Privacy, Korea University, Seoul, Rep.
of Korea
3Department of Information Security,
College of Science and Technology, Korea
University, Sejong, Rep. of Korea

Correspondence
Seokhie Hong, School of Cyber Security,
Korea University, Seoul, Rep. of Korea.
Email: shhong@korea.ac.kr

Funding information
This research was supported by the part
of Military Crypto Research Center
(UD170109ED) funded by Defense
Acquisition Program Administration
(DAPA) and Agency for Defense
Development (ADD).

As side-channel analysis and machine learning algorithms share the same objec-
tive of classifying data, numerous studies have been proposed for adapting machine
learning to side-channel analysis. However, a drawback of machine learning algo-
rithms is that their performance depends on human engineering. Therefore, recent
studies in the field focus on exploiting deep learning algorithms, which can extract
features automatically from data. In this study, we survey recent advances in deep
learning-based side-channel analysis. In particular, we outline how deep learning is
applied to side-channel analysis, based on deep learning architectures and applica-
tion methods. Furthermore, we describe its properties when using different architec-
tures and application methods. Finally, we discuss our perspective on future research
directions in this field.

K E Y W O R D S

deep learning, machine learning, non-profiling attack, profiling attack, side-channel analysis

www.wileyonlinelibrary.com/journal/etrij
https://orcid.org/0000-0002-9521-0937
mailto:﻿
https://orcid.org/0000-0001-7506-4023
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:shhong@korea.ac.kr

     |  293JIN et al.

works in the field have shown that deep learning algorithms
achieve good performance in various applications, such as
image recognition, speech recognition, and natural language
processing. The performance of deep learning in these areas
motivates its application to SCA.

Deep learning automatically learns features from data and
generalizes the representation of data; this aspect will be of
particular interest to a side-channel analyst. Accordingly, im-
provements in deep learning-based SCA (DLSCA) are ex-
pected. Indeed, recent studies have shown the feasibility of
adapting deep learning properties to SCA for key retrieval
and classification accuracy. These studies show that deep
learning offers improved performance compared with clas-
sical side-channel attacks (SCAs). Hence, deep learning
algorithms should be exploited in SCA. However, the per-
formance improvement achieved by DLSCA compared with
that of classical SCA is yet to be understood. Accordingly, a
thorough survey of DLSCA is required.

In this article, we categorize and outline recent progress
in DLSCA. First, we present deep learning-based profiling
SCA. Deep learning-based profiling attacks can be primarily
divided into two categories, namely power modeling using
regression and key guessing through trace classification.
Recent work has shown that side-channel protected algo-
rithms can be analyzed when deep learning is used to classify
power traces for key guessing. We demonstrate the charac-
teristics of DLSCA based on the architecture used for the at-
tack. Second, we introduce new approaches to utilize deep
learning for SCA. Studies have been conducted on applying
deep learning to non-profiling attacks, detecting side-channel
leakages, and encoding side-channel leakages for non-profil-
ing SCA. Each method exploits the learning process of deep
learning for SCA, rather than focusing solely on the input and
output functions. We illustrate the elements of deep learning
used in SCA for each method. Finally, we discuss our per-
spective on the research to be pursued in the future.

Numerous studies on DLSCA have been conducted re-
cently. However, we selected the articles based on the follow-
ing criteria. This study mainly focuses on how deep learning
is applied to SCA. In this regard, the articles covering the
new method of applying deep learning to SCA were chosen
first. We did not attempt to include articles dealing with deep
learning only as part of machine learning (eg, performance
comparison and data-related issues such as class imbalance
[4‒6]). Despite the importance of these studies, owing to our
specific focus and the large volume of related publications,
these articles were omitted. Independently, an introductory
survey article on machine learning-based SCA was published
during the review period of this article [7]. As a survey on
machine learning-based SCA was presented systematically in
[7], we recommend it to compensate for insufficient content.

The rest of this article is organized as follows: Section 2
describes the deep learning algorithm, which is an essential

prerequisite for the subsequent survey in this study. Section
3 introduces attacks based on SCA, such as non-profiling at-
tacks and profiling attacks, along with their countermeasures.
Section 4 introduces deep learning-based SCA techniques,
which are the focus of this study. Finally, Section 5 provides
our comments on the future research direction.

2  |   DEEP LEARNING

In this section, we briefly introduce the basics of deep learn-
ing algorithms, multilayer perceptron (MLP), and convolu-
tional neural networks (CNN; cf. [8]).

2.1  |  Basic deep learning

Deep learning was developed using artificial neural networks,
which have been studied since the middle of the last century.
Currently, deep learning is an active area of research owing
to the advent of the big data era, the enhancement of comput-
ing power, and the development of deep learning algorithms.
Numerous recent studies on deep learning have shown that
deep learning techniques outperform other machine learning
algorithms in the fields of image recognition, speech recogni-
tion, bioinformatics, natural language processing, and so on
[9,10].

Deep learning is a subset of machine learning and is based
on computational models composed of multiple processing
layers that learn the representations of data with sequential
abstraction [9]. In other words, by abstracting the represen-
tation of data sequentially for each layer, multiple process-
ing layers constituting the deep neural network are trained
for recognition or classification. This can be performed be-
cause a neural network having one or more hidden layers and
a nonlinear function can approximate arbitrary Borel mea-
surable functions based on the universal approximation theo-
rem [8,11]. Furthermore, in contrast to the human-dependent
feature selection of machine learning, deep learning archi-
tectures can extract features automatically, resulting in more
accurate machine learning models.

There are several approaches to deep learning: supervised
learning that learns using data with labels, unsupervised
learning that learns using data without labels, and semi-su-
pervised learning that learns using data with and without la-
bels. In this study, we focus on deep learning architectures
trained exclusively using a supervised approach.

The datasets used for deep learning are classified into
three types: training, validation, and test datasets. The train-
ing dataset is a set of data used in the training phase, and the
test dataset is a set of data analyzed using the trained model.
The validation dataset is a set of data with labels used during
the training phase to determine whether the training has been

294  |     JIN et al.

performed correctly as the test dataset is not used during
training. Indeed, the datasets do not have common data.

Deep learning architectures are expressed in (1). A deep
neural network consists of an input layer, a series of hidden
layers, and an output layer. The input layer is an identity func-
tion I in (1). The hidden layer is a composite function of a lin-
ear function and a nonlinear function. A hidden layer can be
expressed as Ai ◦ λi, where Ai is called an activation function.
The deep learning architecture can contain one or more hidden
layers as in (1). The sigmoid and rectified linear unit (ReLU)
functions are representative examples of the activation func-
tion of the hidden layer. The neural network abstracts the repre-
sentations of data through each hidden layer sequentially. The
output layer is the function S in (1), and an identity function
or softmax function is commonly used as an output layer. The
softmax function is defined in (2). The softmax function (or
normalized exponential function) has the effect of normalizing
the output nodes so that the sum of all output nodes is equal
to one while maintaining the magnitude of each node. That is,
the softmax function creates properties similar to a probability
density function.

where λi represents linear functions and Ai represents nonlinear
functions.

Learning or training in deep learning can be interpreted
as a process of changing the weights of linear functions λi
such that the neural network can abstract the representation
of the data. The process of changing the weights is the
same as solving an optimization problem using a gradient
descent optimization algorithm and a backpropagation al-
gorithm. The weights are changed to decrease an error, de-
fined as the value of a loss function (or error function, cost
function, or objective function).* The mean squared error
(MSE) and cross-entropy are commonly used as cost func-
tions [9]. Training proceeds as follows. First, the output
values are calculated through the neural network in (1).
Then, the loss function measures the difference between
the output value and the label, where the output value refers
to the value calculated from the actual input value, and the
label refers to the expected output value. Subsequently, the
gradient is obtained from an output of the loss function and
is used to adjust each weight. This process is expressed in

(3). Various optimizers, such as RMSprop and Adam algo-
rithms, can be used to determine the optimal weights. They
adjust the weights to the gradients with adaptive learning
rates [9,12,13].

where Di represents data and Li represents the label correspond-
ing to Di.

In the deep learning architecture, the number of hidden
layers, the number of nodes in each hidden layer, the activa-
tion function, and the optimizer algorithm are called hyper-
parameters. Hyperparameters are non-trainable parameters
that can be used to control the behavior of the deep learn-
ing algorithm. There are various methods for optimizing hy-
perparameters, such as a random search, grid search, and a
search using an evolutionary algorithm [14,15].

There are two typical difficult cases in the training phase. First,
if the training dataset and validation dataset are small, the loss
function is likely to be biased. In this case, the validation of hyper-
parameters will be illegitimate. A k-fold cross-validation technique
can be used to reduce the bias caused by small datasets. Second,
when the deep learning architecture is trained, its performance can
be improved only with regard to the training dataset and not the
validation dataset. This phenomenon is called overfitting, which
occurs when the weights of the neural network are overtrained
for the training dataset. Techniques such as weight decay [16,17],
dropout [18], batch normalization [19], and data augmentation
[20] are sometimes applied to avoid overfitting. These techniques
also improve the learning performance of a neural network.

2.2  |  Multilayer perceptron

An MLP is one of the most common forms of a neural net-
work. It is also called a feedforward neural network and has
the form shown in Figure 1.

(1)f̂ =S◦An◦𝜆n◦An−1◦𝜆n−1◦An−2◦⋯◦A1◦𝜆1◦I

(2)s(x⃗)[i]=
ex⃗[i]

∑

j

ex⃗[j]
.

* All the terms are not the same and have different meanings in some
machine learning publications. In this article, we consider all the terms to
have similar meaning.

(3)𝜃̂= arg min
𝜃

(loss(f (Di; 𝜃), Li)) for all i∈ I

F I G U R E 1   Multilayer perceptron architecture

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

bias bias

     |  295JIN et al.

In MLP, the linear functions λi in (1) take all the nodes in the
previous layer as input, and the dot products over each weight
of λi are then computed. Owing to this operation, the layers of
an MLP are called fully connected layers. The output values of
the dot products are the input to the activation function Ai. This
is expressed in (4). The MLP is a neural network represented by
the superposition of one or more operations with the form given
in (4). The output of the MLP corresponds to the output of the
last operation. Depending on the learning objectives, a softmax
function can be applied:

Although the MLP is the most common deep learning ar-
chitecture, its performance decreases with distorted data. The
reason for this is that the output value is determined based on
the numerical value of the input data, without considering the
data topology.

2.3  |  Convolutional neural network

The prototype for the current CNN was proposed in the
form of a neocognitron by Kunihiko Fukushima, based
on the work on the visual cortical structure of animals by
David H. Hubel and Torsten Wiesel [21,22]. In 1998, Yann
LeCun and others proposed LeNet for handwriting recog-
nition. LeNet is now considered to represent the origin of
modern CNN architectures. LeNet combines the concepts
of shared weights, subsampling, and backpropagation al-
gorithms [23,24]. AlexNet is another example of a CNN
structure with good results [25]. When these CNN struc-
tures outperformed the traditional machine learning algo-
rithms in visual recognition, the CNN was applied more
broadly to various fields. Indeed, the CNN continues to
gain popularity because of its high performance.

As stated previously, the performance of the MLP de-
grades when a distortion occurs, as it handles numerical val-
ues without considering the topology of the input data. As
the CNN uses properties such as shared weights and subsa-
mpling, it maintains the invariance of the representations of
data even when distortion occurs.

The CNN structure can be depicted as in Figure 2. A CNN is
an architecture formed by superimposing convolutional layers
and pooling layers in front of fully connected layers. The convo-
lutional layer is a specialized kind of linear operation, and it op-
erates as shown in Figure 3. All the values for a feature map [9]
are obtained through a convolutional filter. That is, all the values
of the feature map are calculated using the shared weight. Then,
all the values of the feature maps enter the activation function
directly. The pooling layer is usually placed after the convolu-
tional layer and activation function. The primary function of the
pooling layer is to reduce the size of the feature map extracted

from the convolutional layer. The pooling layer can be viewed
as a resampling method, and Max pooling and average pooling
are mainly used in the pooling layer. Max pooling reduces the
size of the feature map by selecting the maximum value of the
target range, whereas average pooling selects the average value
of the target range. In the CNN architecture, the superposition
of convolutional layers and pooling layers plays the role of ex-
tracting features.

3  |   SIDE-CHANNEL ANALYSIS

Although the cryptographic algorithm has been proven to
be secure, naive implementation can leak the secret infor-
mation through side-channel leakages such as time, power
consumption, and electromagnetic emissions. These un-
intended leakages are due to the physical properties of an
electronic device. Such physically observable phenomena
are determined by the operation and the data being pro-
cessed. In this article, we refer to the “sampled leakage”
as a trace or waveform. A captured trace contains features
that reflect the operation of a device and the processed data.
SCA is any attack using such phenomena from implementa-
tion. Since its introduction in 1996 by Kocher [1], SCA has
been considered a practical and powerful attack. Although
many factors support this consideration, a particular fac-
tor is that it is possible to adopt the divide-and-conquer
approach. This approach reduces computation complexity

(4)Xn =An

(

Wn Xn−1+bn

)

.

F I G U R E 2   Convolutional neural networks architecture

In Out

CONV POOL CONV POOL Flatten Fully-
connected

F I G U R E 3   Example of a convolutional filter operation

2 0 0 1 1

2 2 0 1 1

2 2 1 1 2

1 2 2 1 2

2 2 0 1 0

0 1 0

0 0 -1

-1 1 1

1 2 0 2 0

2 1 1 2 1

1 0 2 0 1

2 0 0 2 0

2 2 2 0 1

-1 1 0

1 -1 0

-1 0 1

1

1

5 -2 3

5 1 4

2 0 -5

Data
(5 × 5 × 2) Filter W0

(3 × 3 × 2)[: , ∶, 0]

[: , ∶, 1]

[: , ∶, 0]

[: , ∶, 1]

Bias b0
(1 × 1 × 1)
[: , : , 0]

Feature map
(3 × 3 × 2)

[: , ∶, 0]

-1 0 1

0 0 -1

-1 -1 -1

-1 0 0

-1 -1 0

1 1 0

0

Filter W1
(3 × 3 × 2)

[: , ∶, 0]

[: , ∶, 1]

Bias b1
(1 × 1 × 1)
[: , : , 0]

-3 0 0

-3 -10 -4

3 -9 -2

[: , ∶, 1]

⋯

Convolutional filter

2 0 0 1 1

2 2 0 1 1

2 2 1 1 2

1 2 2 1 2

2 2 0 1 0

0 1 0

0 0 -1

-1 1 1

1 2 0 2 0

2 1 1 2 1

1 0 2 0 1

2 0 0 2 0

2 2 2 0 1

-1 1 0

1 -1 0

-1 0 1

296  |     JIN et al.

remarkably compared with theoretical attacks against cryp-
tographic algorithms.

SCA is categorized into non-profiling and profiling attacks,
according to the environment provided to an attacker. In this
section, we explain the non-profiling attack, profiling attack,
SCA countermeasures, and issues related to advanced attacks
briefly.

3.1  |  Non-profiling attack

Non-profiling attacks assume that an attacker can only ac-
quire traces from the target equipment. Depending on the
number of traces required for the attack, non-profiling at-
tacks are divided into two types. The first type guesses the
secret information with one or only a few traces. Simple
power analysis (SPA) [1,2] is a representative attack of
the first type. SPA can deduce secret information from one
or only a few traces obtained during the execution of an
algorithm.

The second type guesses secret information through
statistical analysis. Differential power analysis (DPA) [2],
correlation power analysis (CPA) [26], and mutual in-
formation analysis [27] are examples of the second type.
These attacks calculate hypothetical leakages for each pos-
sible key using power models such as Hamming weight
and Hamming distance. Then, the key is inferred through
a comparison between actual leakages and hypothetical
leakages. For this comparison, statistical methods are used,
such as a calculation of the difference of the mean between
groups, the correlation coefficient, and cross-entropy. As
statistical methods are used for these analyses, this type of
attack exploits many traces. Especially in these kinds of
attacks, trace alignment is a necessary step prior to attack
[3,28,29].

3.2  |  Profiling attack

Profiling attacks assume that an attacker has a programmable
device identical to the target device. This programmable device
is called a profiling device. An attacker can use this device to
learn and exploit the physical properties of the profiling device
to extract the secret information of the target device. Profiling
attacks include template attack [30] and stochastic model [31].

Template attacks extract the information corresponding to
the attack point with the profiling equipment. The subtraces of
traces corresponding to the attack point form a certain distribu-
tion. Template attack assumes that such subtraces for a datum
follow a multivariate Gaussian distribution. The attacker es-
timates the mean and covariance matrix of the subtraces for
each possible intermediate data group. This process is called
the profiling phase. After the profiling phase, an attacker infers

data from the trace obtained from the target device through the
maximum likelihood approach. This step is called the attack
phase. The attacker can infer the key from the data obtained in
the attack phase. Similar to non-profiling attack, it is necessary
to align traces. In addition, as the number of attack points used
increases, the complexity increases exponentially. To mitigate
such problems, methods applying dimension reduction such as
principal component analysis (PCA) and linear discriminant
analysis (LDA) have been proposed [32,33]. Furthermore, to
avoid numerical obstacles such as the inverse of the covariance
matrix, the pooled covariance matrix has been proposed to be
used for all intermediate values [34].

3.3  |  Countermeasures

Side-channel analysis countermeasures are categorized into
masking and hiding [3]. First, masking countermeasures ren-
der statistical analysis impossible by randomizing the inter-
mediate values [35,36]. To make intermediate values appear
random, actual random values are selected from a uniform
distribution and are then combined with the intermediate
values. Random values conceal all the intermediate values
during cryptographic operations. The random values are then
removed during the last step to produce the intended output.
Second, hiding countermeasures reduce the signal-to-noise
ratio (SNR) to make leakages unrelated to data or operations.
They are realized through misalignment by injecting random
jitters and a change in internal operation order [37‒39]. An al-
ternative method is producing constant waveforms regardless
of the processed data using hardware dual-rail or software
encoding techniques [40‒43]. Just as naive implementa-
tions can be vulnerable to SCA, side-channel vulnerabilities
can occur in the implementation of SCA countermeasures.
Hence, realizations of SCA countermeasures must be imple-
mented and evaluated through methods such as test vector
leakage assessment (TLVA) [44].

Despite these countermeasures, SCA attackers can attack
using advanced methods with more complexity. Second-order
and higher order differential power analyses have been pro-
posed to defeat masking countermeasures. Second-order and
higher-order power analyses are methods based on the prop-
erty that the actual leakages corresponding to the intermediate
value can be extracted by combining the samples of the trace
relating to the intermediate value [45,46]. However, these sec-
ond-order and higher order attacks require finding points to
be combined, which involves human engineering, that is the
performance of the attack depends on the maturity of the at-
tacker. Moreover, as noise is included in the traces, an attacker
cannot obtain 100% of the actual leakage corresponding to
the intermediate value. Furthermore, noise exponentially in-
creases the number of traces required for an attack. To perform
SCA to defeat hiding countermeasures, increasing the SNR is

     |  297JIN et al.

necessary. The SNR can be improved through pre-processing
steps such as noise reduction, alignment, and superimposition
of the waveforms [3,28,29,47‒49].

4  |   DEEP LEARNING-BASED
SIDE-CHANNEL ANALYSIS

Leakage pre-processing is essential in SCA, as sampled
leakage is noisy and statistical methods must be applied to
multiple traces. Misaligned traces or noise in the collected
traces decrease the correlation between the traces and the
processed data of the device. Therefore, noise reduction,
alignment, and dimension reduction must be performed prior
to SCA. Moreover, points of interest (POI)—significant fea-
tures in the trace—must be selected. In short, pre-processing
and POI selection are the most critical steps that affect the
performance of SCA. Similarly, SCA using machine learn-
ing techniques, such as k-means clustering, support vector
machine, and random forest, also requires pre-processing
and POI selection. As pre-processing and POI selection re-
quire human engineering, they significantly impact the re-
sults [50‒56].

By contrast, deep learning techniques select features
automatically from data. Therefore, when deep learning is
applied to SCA, it is less affected by pre-processing and
POI selection. Indeed, studies have shown that, when deep
learning is adopted, it is possible to analyze data without
the steps required by classical SCA and machine learn-
ing-based SCA.

The general learning strategy for DLSCA is shown in Figure 4.
The traces are used as input data, and the intended output values
that an attacker wishes to extract from the trace are used as the
labels. The labels can be viewed as output values of the Sbox or
the Hamming weight of the Sbox output value. The form of the
label changes depending on the learning objective. In the case of
classification, as the Sbox output values or their Hamming weights
are categorical data, they can be converted by one-hot encoding
(one-hot code) and used as labels [9]. In the case of regression,
the values themselves can be used. In Figure 4, S(Pi + K) is an
output of SubByte of exclusive-or between input and key such as
advanced encryption standard (AES) SubBytes for classification.

In this section, we describe the application methods and
characteristics of DLSCA based on deep learning architec-
tures, namely, the MLP, CNN, and recent approaches. The
DLSCA introduced in this section used the classification
property of deep learning, unless explicitly stated otherwise.

4.1  |  MLP-based profiling side-
channel analysis

The MLP was the first neural network architecture applied to
SCA owing to its structural simplicity. Studies have shown
that the MLP can potentially enhance the performance of SCA.
The first MLP-based SCA was performed by using regression
to characterize leakage. More recently, MLP has been mostly
used to classify the intermediate value of the trace.

Yang and others were the first to use the MLP as regres-
sion to characterize the power model of the Sbox output of
the AES [57]. The choice of power models has a significant
impact on the performance of attacks such as CPA. The
Hamming weight and Hamming distance models are fre-
quently used as a power model. For a leakage model, leakage
characterization and average traces are occasionally used,
because they are more similar to the actual leakage model
than the Hamming weight or Hamming distance [3,58,59].
In [57], an MLP was trained using the Sbox output value and
real power trace as the data and label, respectively. Then, the
trained MLP was used as a power model function to improve
the performance of CPA.

Martinasek and others were the first to use an MLP to cat-
egorize the Sbox output value from a trace [60]. They trained
an MLP against an unprotected AES with its power traces
and Sbox outputs. Since then, earlier works of MLP-based
SCA have not used raw traces but have used pre-processed
traces through average trace reduction, a wavelet transform,
and PCA to improve the performance of the attack [61‒63].
However, later works have confirmed that a DLSCA can
achieve good performance even when raw traces are used
as input data. For example, Maghrebi and others presented
the results of experiments suggesting that an MLP without
PCA outperforms an MLP with PCA [64]. Consequently, raw
traces were used as inputs in subsequent studies.

F I G U R E 4   Example of a structure
from deep learning-based side-channel
attack. Traces and intermediate values are
used as data and labels, respectively

In Out

CONV POOL

S(Pi+K slebaL)

Flatten Fully-
connected

One-hot encoding

0x00
0x01
0x02
0x03
0x04
0x05

0xFE
0xFF

P1

P2

P3

Pn

298  |     JIN et al.

There are ongoing studies that compare the performance
of classical profiling attacks with that of deep learning-based
profiling attacks. In [64,65], the performances of a classical
template attack and an MLP-based attack were compared. In
2016, Maghrebi and others conducted experiments on both AES
hardware and software implementations, analyzing their perfor-
mance when implementing a template attack, random forest,
MLP, CNN, autoencoder, and long short-term memory (LSTM)
[64]. They demonstrated that unprotected AES hardware and
software implementations can be analyzed with an MLP.

It has also been shown that first-order masked AES can be
analyzed using an MLP [62,66,67]. For instance, Martinasek
and other sanalyzed a masked AES software implementation
using an MLP. They proposed two methods for analyzing an
AES-rotating Sbox masking (RSM) implementation using an
MLP on a publicly available dataset—the DPA contest v4 and
v4.2 [68]. The first method used the MLP to find the masking
information used in the RSM. Then, CPA was performed on
the masked Sbox output value using the masking information
obtained through the MLP. The second method used an MLP
to identify the output value of the RSM from the trace, given
the masking information obtained earlier through template
attacks. Maghrebi and others were the first to confirm that
first-order masked AES software can be analyzed by using
only an MLP [64]. In other words, the MLP can identify the
original Sbox output without any knowledge of the masking
information.

4.2  |  CNN-based profiling side-
channel analysis

Unlike an MLP, which uses only numerical values without
considering the data topology, a CNN has a structural prop-
erty that is more robust to data distortions. For example, it is
widely known that a CNN offers good performance for image
recognition, despite considerable data distortions. In the case
of SCA, traces are distorted owing to the noise resulting from
the measurement environment and side-channel counter-
measures. Therefore, it is natural to apply a CNN to SCA.

As mentioned earlier, Maghrebi and others applied
the CNN architecture to SCA [64]. Cagli and others then
proposed a CNN-based SCA on a protected AES with jit-
ter-based hiding methods [69]. They were the first to show
that a CNN could be used to neutralize jitter-based hiding
countermeasures without any other pre-processing. In [69],
through experimentation with learning the Sbox output of
AES protected by random delay insertion and clock jitter,
the robustness of a CNN to data distortions was demon-
strated. Although CNN has fewer weights to train than MLP,
it requires ample learning data to learn the general invari-
ant features of the traces from a device protected by a hiding
method. To deal with insufficient training data and to prevent

overfitting, they also proposed a data augmentation technique
to defeat hiding countermeasures. Specifically, jitter-based
hiding methods were simulated by randomly shifting real
traces and by inserting/removing a certain number of random
points on real traces. These simulated traces were used as
additional training data. Consequently, they confirmed that
the training data were sufficiently increased for learning.
Through their analysis, it was established that CNN-based
SCA does not require pre-processing steps such as trace
alignment. Their result indicates that CNN-based SCA can
also be used to evaluate side-channel resistance objectively.

A study has shown that CNN with additional input neu-
rons enhances the performance of DLSCA. Note that CNN
is composed of two basic parts: feature extraction and fea-
ture classification/regression based on the extracted fea-
ture. Hettwer and others proposed a CNN architecture with
domain knowledge (DK) neurons [70]. DK neurons are
used as an additional input to the fully connected layer—
as additional inputs for feature classification/regression.
Their experiments were based on the assumption that this
additional information can be used to improve the learning
performance. The results in [70] showed that the adoption
of the DK neurons improved the performance. In addition,
they observed that learning the round key outperforms the
case of learning the output of the Sbox. However, further
investigation is required as they did not provide compre-
hensive reasoning regarding why learning the round key as
a label shows a better performance than learning the Sbox
output.

Instead of using raw power trace as input data, a technique
involving transforming the power trace and using it as input
data have also been proposed. On the one hand, Yang and
others proposed a technique that uses the short-time Fourier
transform to transform the power trace in one-dimensional
data into a spectrogram expressed in time-frequency repre-
sentation and used the spectrogram as input data [71]. They
claimed that the spectrogram is more suitable for CNN be-
cause it contains the features of time and frequency informa-
tion simultaneously. Experiments show that DLSCA using
spectrograms can be similar to or better than DLSCA using
power traces in the time domain. On the other hand, Kim
and others proposed a method that adds artificial noise to the
input trace for the robustness of DLSCA, similar to denoising
autoencoder [72].

Carbone and others proposed CNN-based profiled SCA
against a secure RSA implementation with message, expo-
nent, and modulus blinding [73] as side-channel countermea-
sures [74]. Their work was the first DLSCA against public key
cryptosystems. They used a CNN architecture to classify the
address or value of the register. Their experiments showed that
public key cryptosystems can also be analyzed using DLSCA.

After the CNN-based DLSCA technique was proposed,
studies were conducted to compare the performance of

     |  299JIN et al.

CNN-based SCA and other profiling SCA [75,76]. The
ASCAD public dataset was proposed to compare the per-
formances of DLSCA and other profiling SCA methods ob-
jectively [77]. In addition, reproducibility has begun to be
emphasized, for example, by disclosing specific hyperparam-
eters to make the results of previous studies available.

4.3  |  Latest research direction on side-
channel analysis using deep learning

To the best of our knowledge, three new directions for
DLSCA have been proposed recently. These new approaches
exploited the learning process of deep learning for SCA,
rather than focusing solely on the input and output functions
of the classification or regression processes.

The first direction is side-channel leakage detection using
deep learning, independently proposed by Masure and others,
Hettwer and others, and Timon. Whereas Masure and others
and Hettwer and others proposed deep learning-based leakage
detection methods for a profiled scenario, Timon proposed a
technique for a non-profiled situation. In [78], by accumulat-
ing the absolute values of the weights of the first layer of the
MLP, an attacker can determine on which points the leakage
occurred. A disadvantage is that it is difficult to apply this
method in a CNN architecture. Sensitivity analysis can be
used for leakage detection using a CNN [78,79]. Generally,
sensitivity analysis is used to understand the operation of a

mathematical model. In DLSCA, sensitivity analysis can be
used for leakage detection and as a new indicator of whether a
neural network has learned.

In [79], Masure and others proposed selecting POI using
sensitivity analysis. Whereas classical POI selection uses
the SNR, the POI selection method proposed by these au-
thors is based on a leakage detection method called gradient
visualization. They confirmed that there are differences be-
tween the SNR and gradient visualization in terms of POI
selection. To compare the classical POI selection method
with their proposed gradient visualization technique, tem-
plate attacks were performed with different POI selection
methods. The results from [79] illustrated that template at-
tacks perform better when using the gradient visualization
technique to select POI.

A leakage analysis technique using attribution meth-
ods was proposed in a profiled scenario [80]. Attribution
methods were used to analyze how each component of
input datum influences the output. Hettwer and others
used such attribution methods for leakage analysis, and
presented three attribution methods, which are based on
the saliency map [81], layer-wise relevance propagation
[82], and occlusion sensitivity analysis [83]. These meth-
ods detect leakage and are used to select POI in a simi-
lar manner as the aforementioned gradient visualization
technique. Additionally, Hettwer and others proposed the
usage of the attribution method as an SCA distinguisher.
According to the value of the output node, different

F I G U R E 5   Results of attack on unprotected implementation with de-synchronization [78]. (A) CNN-DDLA accuracy. (B) CNN-DDLA
input-based sensitivity. (C) MLP-DDLA accuracy. (D) CPA

Good key guess Wrong key guess

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.60

0.58

0.56

0.54

0.52

0.50

0.48

0.46

1.0

0.8

0.6

0.4

0.2

0.0

0.5

0.4

0.3

0.2

0.1

0.0

Epoch number

Epoch number

Time samples

Time samples

A
cc

ur
ac

y
A

cc
ur

ac
y

C
or

re
la

tio
n

In
pu

ts
-b

as
ed

 se
ns

iti
vi

ty

(A)

(C) (D)

(B)

300  |     JIN et al.

properties of attribution are observed. Based on these
properties, it is possible to find the key using the attribu-
tion method.

The second direction is a deep learning-based non-pro-
filing SCA technique. Timon was the first to propose a
non-profiling method called differential deep learning
analysis (DDLA), which exploits the fact that whether a
neural network is trained depends on whether the key is
correctly guessed [78]. DDLA uses the trace and interme-
diate value as the input and label, respectively. As DDLA
is a partition-based SCA, intermediate values that are the
output of injective functions such as MSB and LSB, or the
Hamming weight of intermediate values must be used as
a label. The output of the injective function reflects the
partition class well according to the key guess. Similar to
DPA and CPA, in DDLA, the intermediate value is com-
puted through the guessed round key and is used as a label.
Note that an intermediate value calculated with the wrong
key is unrelated to the trace such that the neural network
will not be trained on the traces. However, when the inter-
mediate value computed through the right key is related to
the trace, the neural network can be trained. Based on this
examination, after training the neural network for each key
guess, an attacker can determine the correct key by observ-
ing the variation of a metric such as the accuracy or output
of a loss function.

Timon experimentally verified that CNN-based DDLA
can be used against both masking and hiding countermea-
sures. Figure 5 shows the performance of DDLA and CPA
when an MLP and CNN are used for DDLA to analyze AES
with hiding countermeasures. As has been repeatedly empha-
sized previously, CNN-based SCA does not require pre-pro-
cessing in the non-profiled scenario. Moreover, as depicted
in Figures 5 and 6, DDLA can detect leakage with sensitiv-
ity analysis in a non-profiled scenario. Although DDLA has
the advantage that it can be implemented in a non-profiled
scenario, suitable hyperparameters must be determined and
set. Furthermore, an attacker must train the neural network in
proportion to the number of keys.

The third direction is the usage of a neural network as
a trace encoder for non-profiling SCA. Robyns and others
proposed a correlation optimization technique for improv-
ing correlation electromagnetic analysis (CEMA) [84]. For
key recovery through CEMA, only one time sample for
each trace is important. Accordingly, they trained a neu-
ral network that uses trace as the input, a sample as the
output for each byte for regression, and the constraint to
maximize the correlation between the output and interme-
diate value as a loss function. Through such training, the
neural network becomes the encoding function that outputs
a single sample to maximize the performance of CEMA.
They conducted experiments on CEMA using correlation
optimization. Their experiments indicated that CEMA can
outperform CNN-based classification, using correlation op-
timization even with shallow MLP and transformed traces,
which are desynchronized traces transformed into the fre-
quency domain.

5  |   CONCLUSION AND FUTURE
WORKS

In this study, we surveyed recent, state-of-the-art advances in
DLSCA. We confirmed that an MLP and CNN are effective
for SCA even without pre-processing. We also surveyed new
approaches for applying deep learning algorithms to non-
profiling attacks, leakage detection, and leakage encoder. To
provide a comprehensive overview, we summarized our find-
ings in Table 1.

Owing to the characteristics of deep learning algorithms,
DLSCA does not require pre-processing. This makes it suit-
able as a tool for evaluating side-channel resistance objectively.
However, as most of the studies focus on profiling attacks, ad-
ditional studies dealing with the following aspects are required.

First, a comprehensive study of the application of deep
learning in SCA is required to interpret why the neural net-
work is effective for SCA. Previous studies only confirmed
that deep learning algorithms enhance SCA performance

F I G U R E 6   Results of MLP-DDLA attack on ASCAD [78]. (A) Accuracy, (B) Inputs-based sensitivity, and (C) CPA reverse engineering

Good key guess
Wrong key guess

0 5 10 15 20 25 30 35 40 45 50

0.70

0.65

0.60

0.55

0.50

Epoch number

A
cc

ur
ac

y
Good key guess
Wrong key guess

0 100 200 300 400 500 600 700

Time samples

In
pu

ts
-b

as
ed

 se
ns

iti
vi

ty

0.00035

0.00030

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

0 100 200 300 400 500 600 700

Time samples

0.8

0.6

0.4

0.2

0.0

C
or

re
la

tio
n

r[3]
sbox r[3]⊕

(A) (B) (C)

     |  301JIN et al.

through various experiments. Understanding the exact reason
is crucial to remove leakage issues that currently lead to per-
formance issues.

Second, an efficient hyperparameter search method is
required for SCA. The performance of SCA cannot benefit
from using a deep learning algorithm if the hyperparameter
is not selected properly, and searching for a suitable hyperpa-
rameter is expensive. Hence, studies should examine an effi-
cient hyperparameter search method for SCA.

Third, other deep learning architectures must be ex-
plored. Many other deep learning architectures exist, and
each architecture offers different properties. DLSCA can
benefit significantly from an intensive survey of existing
architectures.

As a final note, we thank the authors of prior studies on
DLSCA.

ORCID
Sunghyun Jin https://orcid.org/0000-0002-9521-0937
Seokhie Hong https://orcid.org/0000-0001-7506-4023

REFERENCES
	 1.	 P.C. Kocher, Timing attacks on implementations of diffie-hellman,

rsa, dss, and other systems, in Proc. Annu. Int. Cryptology Conf.,
Santa Barbara, CA, USA, 1996, pp.104–113.

	 2.	 P. Kocher, J. Jaffe, and B. Jun, Differential power analysis, in
Ann. Int. Cryptol. Conf., Santa Barbara, CA, USA, Aug. 1999, pp.
388–397.

	 3.	 S. Mangard, E. Oswald, and T. Popp, Power analysis attacks:
Revealing the secrets of smart cards, Springer Science & Business
Media, Heidelberg, 2008.

	 4.	 L. Lerman, Z. Martinasek, and O. Markowitch, Robust profiled at-
tacks: should the adversary trust the dataset? IET Inf. Secur. 11
(2016), no. 4, 188–194.

T A B L E 1   Summary of deep learning-based side-channel attack studies

Ref. Architecture Type Target Countermeasure Usage Remark

[57] MLP Profiling AES None Regression Leakage characterization

[60] MLP Profiling AES None Classification Average traces for each plaintext are used

[61] MLP Profiling AES None Classification Above average traces for each plaintext was reduced by
average trace for all traces.

[63] MLP Profiling AES None Classification Discrete wavelet transform is used as pre-processing

[62] MLP Profiling AES Masking Classification Mask and value of output of masked Sbox are identified
separately, and PCA is used as pre-processing

[66] MLP Profiling AES Masking Classification Masking information is identified prior to DPA

[67] MLP Profiling AES Masking Classification Value of output of masked Sbox is identified after
masking information is identified using template attack

[64] MLP/CNN/
Autoencoder/
LSTM

Profiling AES Masking Classification Unknowing masking information, value of output of
Sbox is identified

[69] CNN Profiling AES Masking/Hiding Classification To defeat jitter-based hiding countermeasure, CNN
with data augmentation are used

[70] CNN Profiling AES Masking/Hiding Classification Domain knowledge neurons are introduced

[71] CNN Profiling AES Masking Classification Spectrogram of trace is used as input

[72] CNN Profiling AES Masking/Hiding Classification Adding artificial noise to the input

[74] CNN Profiling RSA Message blinding/
Exponent blinding/
Modulus blinding

Classification Value manipulation and Register manipulation are
analyzed

[75] MLP/CNN Profiling AES Masking/Hiding Classification Analyzing on performance of CNN-based SCA

[76] CNN Profiling AES Masking/Hiding Classification Comparison between CNN-based SCA and Template
attack

[77] CNN Profiling AES Masking/Hiding Classification Public dataset ASCAD is introduced

[78] MLP/CNN Non-
profiling

AES Masking/Hiding Classification Non-profiling attack and leakage detection

[79] CNN Profiling AES Masking/Hiding Classification POIs selection and leakage detection based on gradient
visualization

[80] CNN Profiling AES Masking/Hiding Classification POIs selection and leakage detection based on
attribution method

[84] MLP Profiling AES Masking/Hiding Regression Trace encoder for non-profiling SCA

https://orcid.org/0000-0002-9521-0937
https://orcid.org/0000-0002-9521-0937
https://orcid.org/0000-0001-7506-4023
https://orcid.org/0000-0001-7506-4023

302  |     JIN et al.

	 5.	 Z. Martinasek et al., k-nearest neighbors algorithm in profiling
power analysis attack, Radioeng. 25 (2016), no. 2, 365–382.

	 6.	 S. Picek et al., The curse of class imbalance and conflicting metrics
with machine learning for side-channel evaluations, IACR Trans.
Cryptogr. Hardw. Embed. Syst. 1 (2018), no. 8, 209–237.

	 7.	 B. Hettwer, S. Gehrer, and T. Güneysu, Applications of machine
learning techniques in side-channel attacks: a survey, J. Cryptogr.
Eng. (2019), https​://doi.org/10.1007/s13389-019-00212-8.

	 8.	 I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, MIT
Press, 2016. https​://www.deepl​earni​ngbook.org/.

	 9.	 Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521
(2015), no. 7553, 436–444.

	10.	 S. Mahdavifar and A. A. Ghorbani, Application of deep learning to
cybersecurity: a survey, Neurocomput. 347 (2019), 149–176.

	11.	 K. Hornik, Approximation capabilities of multilayer feedforward
networks, Neural Netw. 4 (1991), no. 2, 251–257.

	12.	 G. Hinton, N. Srivastava, and K. Swersky, Neural networks for
machine learning lecture 6a overview of mini-batch gradient de-
scent, Neural Netw. Machine Learn., Coursera MOOC, 2012.
https​://www.cs.toron​to.edu/~hinto​n/cours​era/lectu​re6/lec6.pdf.

	13.	 D. P. Kingma and J. Ba, Adam: a method for stochastic optimization,
arXiv preprint arXiv:1412.6980, 2014. https​://arxiv.org/abs/1412.6980.

	14.	 J. Bergstra and Y. Bengio, Random search for hyper-parameter op-
timization, J. Machine Learn. Res. 13 (2012), 281–305.

	15.	 S. R. Young et al. Optimizing deep learning hyper-parameters
through an evolutionary algorithm, in Proc. Workshop Mach.
Learn. High-Perform. Comput. Environ., New York, NY, USA,
Nov. 2015, pp. 4:1–5.

	16.	 N. Tikhonov, On the stability of inverse problems, Dokl. Akad.
Nauk SSSR 39 (1943), 195–198.

	17.	 R. Tibshirani, Regression shrinkage and selection via the lasso, J.
Roy. Stat. Soc.: Ser. B (Methodol.) 58 (1996), no. 1, 267–288.

	18.	 N. Srivastava et al., Dropout: a simple way to prevent neural net-
works from overfitting, J. Mach. Learn. Res. 15 (2014), no. 1,
1929–1958.

	19.	 S. Ioffe and C, Szegedy. Batch normalization: accelerating
deep network training by reducing internal covariate shift,
arXiv preprint arXiv:1502.03167, 2015. https​://arxiv.org/
abs/1502.03167v2.

	20.	 N. Jaitly and G. E. Hinton, Vocal tract length perturbation
(VTLP) improves speech recognition, in Proc. Int. Conf. Machine.
Learning, Atlanta, GA, USA, 2013, pp. 1–5.

	21.	 D. H. Hubel and T. N. Wiesel, Receptive fields and functional
architecture of monkey striate cortex, J. Phys. 195 (1968), no. 1,
215–243.

	22.	 K. Fukushima, Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in
position, Biol. Cybern. 36 (1980), no. 4, 193–202.

	23.	 Y. LeCun et al., Handwritten digit recognition with a back-prop-
agation network, in Proc. Adv. Neural Inf. Process. Syst, Denver,
CO, USA, Nov. 1989, pp. 396–404.

	24.	 Y. LeCun et al., Gradient-based learning applied to document rec-
ognition, Proc. IEEE 86 (1998), no. 8, 2278–2324.

	25.	 A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classifica-
tion with deep convolutional neural networks, in Proc. Adv. Neural
Inf. Process. Syst., Stateline, NV, USA, 2012, pp. 1097–1105.

	26.	 E. Brier, C. Clavier, and F. Olivier, Correlation power analysis
with a leakage model, in Proc. Int. Workshop Cryptogr. Hardw.
Embed. Syst., Cambridge, MA, USA, Aug. 2004, pp. 16–29.

	27.	 B. Gierlichs et al., Mutual information analysis, in Proc. Int.
Workshop Cryptogr. Hardw. Embed. Syst., Washington, D.C.,
USA, Aug. 2008, pp. 426–442.

	28.	 J. G. van Woudenberg, M. F. Witteman, and B. Bakker, Improving
differential power analysis by elastic alignment, Cryptogr.
Track RSA Conf., San Francisco, CA, USA, Feb. 2011, pp.
104–119.

	29.	 R. A. Muijrers, J. G. van Woudenberg, and L. Batina, Ram: rapid
alignment method, in Proc. Int. Conf. Smart Card Res. Adv.
Applicat., Leuven, Belgium, Sept. 2011, pp. 266–282.

	30.	 S. Chari, J. R. Rao, and P. Rohatgi, Template attacks, in Proc. Int.
Workshop Cryptogr. Hardw. Embed. Syst., Redwood Shores, CA,
USA, Aug, 2002, pp. 13–28.

	31.	 W. Schindler, K. Lemke, and C. Paar, A stochastic model for differ-
ential side channel cryptanalysis, in Proc. Int. Workshop Cryptogr.
Hardw. Embed. Syst., Edinburgh, UK, 2005, pp. 30–46.

	32.	 C. Archambeau et al., Template attacks in principal subspaces, in
Proc. Int. Workshop Cryptogr. Hardw. Embed. Syst., Yokohama,
Japan, Oct. 2006, pp. 1–14.

	33.	 F.-X. Standaert and C. Archambeau, Using subspace-based tem-
plate attacks to compare and combine power and electromagnetic
information leakages, in Proc. Int. Workshop Cryptogr. Hardw.
Embed. Syst., Washington, D.C., USA, Aug. 2008, pp. 411–425.

	34.	 O. Choudary and M. G. Kuhn, Efficient template attacks, in Proc.
Int. Conf. Smart Card Res. Adv. Applicat., Berlin, Germany, Nov.
2013, pp. 253–270.

	35.	 S. Chari et al. Towards sound approaches to counteract pow-
er-analysis attacks, in Proc. Annu. Int. Cryptol. Conf. (CRYPTO),
Santa Barbara, CA, USA, Aug. 1999, pp. 398–412.

	36.	 L. Goubin and J. Patarin, Des and differential power analysis the “du-
plication” method, in Proc. Int. Workshop Cryptogr. Hardw. Embed.
Syst. (CHES), Worcester, MA, USA, Aug. 1999, pp. 158–172.

	37.	 J.-S. Coron and I. Kizhvatov, An efficient method for random delay gen-
eration in embedded software, in Proc. Int. Workshop Cryptogr. Hardw.
Embed. Syst., Lausanne, Switzerland, Sept. 2009, pp. 156–170.

	38.	 J-S. Coron and I. Kizhvatov, Analysis and improvement of the random
delay countermeasure of CHES 2009, in Int. Workshop Cryptogr.
Hardw. Embed. Syst., Santa Barbara, USA, Aug. 2010, pp. 95–109.

	39.	 N. Veyrat-Charvillon et al., Shuffling against side-channel attacks:
A comprehensive study with cautionary note, in Proc. Int. Conf.
Theory Appl. Cryptol. Inf. Sec. (ASIACRYPT), Beijing, China,
Dec. 2012, pp. 740–757.

	40.	 K. Tiri, M. Akmal, and I. Verbauwhede, A dynamic and differ-
ential cmos logic with signal independent power consumption to
withstand differential power analysis on smart cards, in Proc.
Eur. Solid-State Circ. Conf., Florence, Italy, Sept. 2002, pp.
403–406.

	41.	 T. Popp and S. Mangard., Masked dual-rail pre-charge logic: DPA-
resistance without routing constraints, in Proc. Int. Workshop Cryptogr.
Hardw. Embed. Syst. (CHES), Edinburgh, UK, Aug. 2005, pp. 172–186.

	42.	 C. Chen et al. Balanced encoding to mitigate power analysis: a case
study, in Proc. Int. Conf. Smart Card Res. Adv. Appl. (CARDIS),
Paris, France, Nov. 2014, pp. 49–63.

	43.	 H. Maghrebi, V. Servant, and J. Bringer, There is wisdom in har-
nessing the strengths of your enemy: customized encoding to thwart
side-channel attacks, in Proc. Int. Conf. Fast Softw. Encrypt.
(FSE), Bochum, Germany, Mar. 2016, pp. 223–243.

	44.	 G. Becker et al. Test vector leakage assessment (TVLA) methodol-
ogy in practice, in Proc. Int. Cryptogr. Module Conf. 1001 (2013).

https://doi.org/10.1007/s13389-019-00212-8
https://www.deeplearningbook.org/
https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1502.03167v2
https://arxiv.org/abs/1502.03167v2

     |  303JIN et al.

	45.	 T. S. Messerges. Using second-order power analysis to at-
tack DPA resistant software, in Proc. Int. Workshop Cryptogr.
Hardw. Embed. Syst. (CHES), Worcester, MA, USA, Aug. pp.
238–251.

	46.	 E. Prouff, M. Rivain, and R. Bevan, Statistical analysis of second
order differential power analysis, IEEE Trans. Comput. 58 (2009),
no. 6, 799–811.

	47.	 C. Clavier, J. S. Coron, and N. Dabbous, Differential power anal-
ysis in the presence of hardware countermeasures, in Proc. Int.
Workshop Cryptogr. Hardw. Embed. Syst. (CHES), Worcester,
MA, USA, Aug. 2000, pp. 252–263.

	48.	 S. Nagashima et al., DPA using phase-based waveform matching
against random-delay countermeasure, in Proc. IEEE Int. Symp.
Cir. Syst., New Orleans, LA, USA, May 2007, pp. 1807–1810.

	49.	 F. Durvaux et al., Efficient removal of random delays from em-
bedded software implementations using hidden markov models,
in Proc. Int. Conf. Smart Card Res. Adv. Appl. (CARDIS), Graz,
Austria, Nov. 2012, pp. 123–140.

	50.	 L. Lerman, G. Bontempi, and O. Markowitch, Side channel attack:
an approach based on machine learning, in Proc. Int. Workshop
Construct. Side-Channel Anal. Secure Design (COSADE),
Darmstadt, Germany, 2011, pp. 29–41.

	51.	 G. Hospodar et al., Machine learning in side-channel analysis: a
first study, J. Cryptogr. Eng. 1 (2011), no. 4, 293–302.

	52.	 T. Bartkewitz and K. Lemke-Rust, Efficient template attacks based
on probabilistic multi-class support vector machines, in Proc. Int.
Conf. Smart Card Res. Adv. Appl. (CARDIS), Graz, Austria, Nov.
2012, pp. 263–276.

	53.	 A. Heuser and M. Zohner, Intelligent machine homicide, in Proc.
Int. Workshop Construct. Side-Channel Anal. Secure Design
(COSADE), Darmstadt, Germany, May 2012, pp. 249–264.

	54.	 J. Heyszl et al., Clustering algorithms for non-profiled single-execu-
tion attacs on exponentiations, in Proc. Int. Conf. Smart Card Res.
Adv. Appl. (CARDIS), Berlin, Germany, Nov. 2013, pp. 79–93.

	55.	 L. Lerman, G. Bontempi, and O. Markowitch, A machine learning
approach against a masked AES, in Proc. Int. Conf. Smart Card
Res. Adv. Appl. (CARDIS), Berlin, Germany, Nov. 2013, pp.
61–75.

	56.	 R. Specht et al., Improving non-profiled attacks on exponentia-
tions based on clustering and extracting leakage from multi-chan-
nel high-resolution em measurements, in Proc. Int. Workshop
Construct. Side-Channel Anal. Secure Design (COSADE), Berlin,
Germany, Apr. 2015, pp. 3–19.

	57.	 S. Yang et al., Back propagation neural network based leakage
characterization for practical security analysis of cryptographic
implementations, in Proc. Int. Conf. Inf. Secur. Cryptol. (ICISC),
Seoul, Rep. of Korea, Nov. 2011, pp. 169–185.

	58.	 C. Whitnall and E. Oswald, Profiling DPA: efficacy and efficiency
trade-offs, in Proc. Int. Workshop Cryptogr. Hardw. Embed. Syst.
(CHES), Santa Barbara, CA, USA, Aug. 2013, pp. 37–54.

	59.	 A. Moradi and F. X. Standaert, Moments-correlating DPA, in
Proc. ACM Workshop Theory Implement. Secur. (ACM), Vienna,
Austria, Oct. 2016, pp. 5–15.

	60.	 Z. Martinasek and V. Zeman, Innovative method of the power anal-
ysis, Radioengineering 2 (2013), no. 2, 586–594.

	61.	 Z. Martinasek, J. Hajny, and L. Malina, Optimization of power anal-
ysis using neural network, in Proc. Int. Conf. Smart Card Res. Adv.
Applicat. (CARDIS), Berlin, Germany, Nov. 2014, pp. 94–107.

	62.	 R. Gilmore, N. Hanley, and M. O'Neill, Neural network based at-
tack on a masked implementation of AES, in Proc. IEEE Int. Symp.

Hardw. Orient. Secur. Trust (HOST), Washington, DC, USA, May
2015, pp. 106–111.

	63.	 P. Saravanan et al., Power analysis attack using neural networks
with wavelet transform as pre-processor, in Proc. Int. Symp. VLSI
Design Test, Coimbatore, India, July 2014, pp. 1–6.

	64.	 H. Maghrebi, T. Portigliatti, and E. Prouff, Breaking cryptographic
implementations using deep learning techniques, in Proc. Int.
Conf. Secur. Privacy Appl. Cryptogr. Eng. (SPACE), Hyderabad,
India, Dec. 2016, pp. 3–26.

	65.	 Z. Martinasek and L. Malina, Comparison of profiling power anal-
ysis attacks using templates and multi-layer perceptron network, 1st
Int. Conf. Math. Method Sci. Eng. (MMCTSE), 2014, pp. 134–139.

	66.	 Z. Martinasek et al., Power analysis attack based on the MLP in
DPA contest v4, in Proc. Int. Conf. Telecommun. Signal Process.,
Prague, Czech Republic, July 2015, pp. 154–158.

	67.	 Z. Martinasek, P. Dzurenda, and L. Malina, Profiling power analysis at-
tack based on mlp in DPA contest v4.2, in Proc. Int. Conf. Telecommun.
Signal Process. (TSP), Vienna, Austria, June 2016, pp. 223–226.

	68.	 TELECOM ParisTech~SEN Research Group, DPA contest (4th
ed.), 2013–2014, http://www.DPAco​ntest.org/v4/.

	69.	 E. Cagli, C. Dumas, and E. Prouff, Convolutional neural networks
with data augmentation against jitter-based countermeasures,
in Proc. Int. Workshop Cryptogr. Hardw. Embed. Syst. (CHES),
Taipei, Taiwan, Sept. 2017, pp. 45–68.

	70.	 B. Hettwer, S. Gehrer, and T. Güneysu, Profiled power analysis at-
tacks using convolutional neural networks with domain knowledge,
in Proc. Int. Conf. Select. Areas Cryptogr. (SAC). Calgary, Canada,
2018, pp. 479–498.

	71.	 G. Yang et al., Convolutional neural network based side-channel at-
tacks in time-frequency representations, in Proc. Int. Conf. Smart Card
Res. Adv. Appl. (CARDIS), Montpellier, France, Nov. 2018, pp. 1–17.

	72.	 J. Kim et al., Make some noise: Unleashing the power of convolutional
neural networks for profiled side-channel analysis, Cryptology ePrint-
Archive Report 2018/1023, 2018, https​://eprint.iacr.org/2018/1023.

	73.	 J.-S. Coron, Resistance against differential power analysis for
elliptic curve cryptosystems, in Proc. Int. Workshop Cryptogr.
Hardw. Embed. Syst. (CHES), Worcester, MA, USA, Aug. 1999,
pp. 292–302.

	74.	 M. Carbone et al., Deep learning to evaluate secure rsa implemen-
tations, IACR Trans. Cryptogr. Hardw. Embed. Syst. 2 (2019), no.
5, 132–161.

	75.	 S. Picek et al., On the performance of convolutional neural net-
works for side-channel analysis, in Proc. Int. Conf. Secur. Privacy
Appl. Cryptogr. Eng., Kanpur, India, Dec. 2018, pp. 157–176.

	76.	 Y. Zotkin, F. Olivier, and E. Bourbao (eds.), Deep learning vs. tem-
plate attacks in front of fundamental targets: experimental study,
Cryptology ePrint Archive Report 2018/1213, 2018, https​://eprint.
iacr.org/2018/1213.

	77.	 E. Prouff et al., Study of deep learning techniques for side-channel
analysis and introduction to ascad database, Cryptology ePrint,
Archive, Report 2018 (2018/53), https​://eprint.iacr.org/2018/053.

	78.	 B. Timon, Non-profiled deep learning-based side-channel attacks
with sensitivity analysis, IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2 (2019), no. 4, 107–131.

	79.	 L. Masure, C. Dumas, and E. Prouff, Gradient visualization
for general characterization in profiling attacks, Cryptology
ePrint Archive, Report 2018/1196, 2018, https​://eprint.iacr.org/​
2018/1196.

	80.	 B. Hettwer, S. Gehrer, and T. Güneysu, Deep neural network attri-
bution methods for leakage analysis and symmetric key recovery,

http://www.DPAcontest.org/v4/
https://eprint.iacr.org/2018/1023
https://eprint.iacr.org/2018/1213
https://eprint.iacr.org/2018/1213
https://eprint.iacr.org/2018/053
https://eprint.iacr.org/2018/1196
https://eprint.iacr.org/2018/1196

304  |     JIN et al.

Cryptology ePrint Archive, Report 2019/143, 2019, https​://eprint.
iacr.org/2019/143

	81.	 A. Vedaldi, A. Zisserman, and K. Simonyan, Deep inside convo-
lutional networks: Visualising image classification models and sa-
liency maps, arXiv preprint arXiv:1312.6034, 2013. https​://arxiv.
org/abs/1312.6034.

	82.	 S. Bach et al., On pixel-wise explanations for non-linear classier de-
cisions by layer-wise relevance propagation, PLoS ONE 10 (2015),
no. 7, e0130140. https​://doi.org/10.1371/journ​al.pone.0130140.

	83.	 M. D. Zeiler and R. Fergus, Deep inside convolutional networks:
Visualising image classification models and saliency maps, arXiv
preprint arXiv:1311.2901, 2013. https​://arxiv.org/abs/1311.2901.

	84.	 P. Robyns, P. Quax, and W. Lamotte, Improving cema using cor-
relation optimization, IACR Trans. Cryptogr. Hardw. Embed. Syst.
(TCHES) 1 (2019), no. 1, 1–24.

AUTHOR BIOGRAPHIES

Sunghyun Jin received his BS degree
in mathematics and computer science
from the University of Seoul, Seoul,
Rep. of Korea, in 2015. He received
his MS degree in information security
from Korea University, Seoul, Rep. of
Korea, in 2017, where he is currently

pursuing his PhD degree. His main research interests in-
clude side-channel analysis and its countermeasures, and
machine learning-based cryptanalysis.

Suhri Kim received her BS degree in
mathematics from Korea University,
Seoul, Rep. of Korea, in 2014. She re-
ceived her MS degree in information
security from Korea University, Seoul,
Rep. of Korea, in 2016, where she is
currently pursuing her PhD degree.

Her main research interests include public key cryptosys-
tems, optimizing implementations, and side-channel anal-
ysis and its countermeasures.

HeeSeok Kim received his BS degree
in mathematics from Yonsei
University, Seoul, Rep. of Korea, in
2006, and his MS and PhD degrees in
engineering and information security
from Korea University, Seoul, Rep. of
Korea, in 2008 and 2011, respectively.

He worked as a postdoctoral researcher at the University
of Bristol, UK, from 2011 to 2012. From 2013 to 2016, he
worked as a senior researcher at the Korea Institute of
Science and Technology Information. Since 2016, he has
been with Korea University. His research interests include
side-channel attacks, cryptography, and network security.

Seokhie Hong received his MS and
PhD degrees in mathematics from
Korea University, Seoul, Rep. of Korea,
in 1997 and 2001, respectively. He
worked for SECURITY Technologies
Inc. from 2000 to 2004. From 2004 to
2005, he worked as a postdoctoral re-

searcher with COSIC at KU Leuven, Belgium. Since 2005,
he has been with Korea University, where he is now work-
ing in the School of Cyber Security. His specialty lies in the
area of information security, and his research interests in-
clude the design and analysis of symmetric-key cryptosys-
tems, public-key cryptosystems, and forensic systems.

https://eprint.iacr.org/2019/143
https://eprint.iacr.org/2019/143
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6034
https://doi.org/10.1371/journal.pone.0130140
https://arxiv.org/abs/1311.2901

