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1  |   INTRODUCTION

Experts estimate that the explosive growth of the Internet 
of Things (IoT) introduces not only a new dimension to in-
formation and communication technology but also difficult 
problems regarding security. As IoT devices tend to handle 
personal data, potential attacks must be considered when 
securing these devices. Side-channel analysis (SCA) is the 
most representative attack among potential attacks. SCA is a 
technique for unveiling secret information based on analyzing 
the data obtained from the execution of an algorithm, rather 
than the algorithm itself [1‒3]. We shall refer to such data 
as leakages, and examples of leakages include time, power 
consumption, and electromagnetic emission.

The ultimate objective of SCA is to reveal the secret key 
of a device. This analysis is performed by exploiting the re-
lations between leakages obtained during the execution of an 

algorithm and a secret key. An attacker collects leakages and 
analyzes them using specific models and appropriate met-
rics to determine the secret key. In this regard, SCA could be 
transformed into a classification problem. Machine learning 
models are mathematical functions that find patterns in data. 
As classifying the given data is an essential application of ma-
chine learning, machine learning techniques can be adapted 
to SCA. A drawback is that machine learning requires human 
engineering in some manner for better performance.

Deep learning is a subset of machine learning that has 
been studied since the mid-1990s. It can extract features 
automatically from input data. Deep learning did not gain 
considerable attention when it was first proposed, owing to 
insufficient performance caused by a lack of computing pow-
ers and training data. In the last decade, the gradual enhance-
ment of computing power and the advent of big data have 
led to vast improvements in deep learning algorithms. Recent 
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works in the field have shown that deep learning algorithms 
achieve good performance in various applications, such as 
image recognition, speech recognition, and natural language 
processing. The performance of deep learning in these areas 
motivates its application to SCA.

Deep learning automatically learns features from data and 
generalizes the representation of data; this aspect will be of 
particular interest to a side-channel analyst. Accordingly, im-
provements in deep learning-based SCA (DLSCA) are ex-
pected. Indeed, recent studies have shown the feasibility of 
adapting deep learning properties to SCA for key retrieval 
and classification accuracy. These studies show that deep 
learning offers improved performance compared with clas-
sical side-channel attacks (SCAs). Hence, deep learning 
algorithms should be exploited in SCA. However, the per-
formance improvement achieved by DLSCA compared with 
that of classical SCA is yet to be understood. Accordingly, a 
thorough survey of DLSCA is required.

In this article, we categorize and outline recent progress 
in DLSCA. First, we present deep learning-based profiling 
SCA. Deep learning-based profiling attacks can be primarily 
divided into two categories, namely power modeling using 
regression and key guessing through trace classification. 
Recent work has shown that side-channel protected algo-
rithms can be analyzed when deep learning is used to classify 
power traces for key guessing. We demonstrate the charac-
teristics of DLSCA based on the architecture used for the at-
tack. Second, we introduce new approaches to utilize deep 
learning for SCA. Studies have been conducted on applying 
deep learning to non-profiling attacks, detecting side-channel 
leakages, and encoding side-channel leakages for non-profil-
ing SCA. Each method exploits the learning process of deep 
learning for SCA, rather than focusing solely on the input and 
output functions. We illustrate the elements of deep learning 
used in SCA for each method. Finally, we discuss our per-
spective on the research to be pursued in the future.

Numerous studies on DLSCA have been conducted re-
cently. However, we selected the articles based on the follow-
ing criteria. This study mainly focuses on how deep learning 
is applied to SCA. In this regard, the articles covering the 
new method of applying deep learning to SCA were chosen 
first. We did not attempt to include articles dealing with deep 
learning only as part of machine learning (eg, performance 
comparison and data-related issues such as class imbalance 
[4‒6]). Despite the importance of these studies, owing to our 
specific focus and the large volume of related publications, 
these articles were omitted. Independently, an introductory 
survey article on machine learning-based SCA was published 
during the review period of this article [7]. As a survey on 
machine learning-based SCA was presented systematically in 
[7], we recommend it to compensate for insufficient content.

The rest of this article is organized as follows: Section 2 
describes the deep learning algorithm, which is an essential 

prerequisite for the subsequent survey in this study. Section 
3 introduces attacks based on SCA, such as non-profiling at-
tacks and profiling attacks, along with their countermeasures. 
Section 4 introduces deep learning-based SCA techniques, 
which are the focus of this study. Finally, Section 5 provides 
our comments on the future research direction.

2  |   DEEP LEARNING

In this section, we briefly introduce the basics of deep learn-
ing algorithms, multilayer perceptron (MLP), and convolu-
tional neural networks (CNN; cf. [8]).

2.1  |  Basic deep learning

Deep learning was developed using artificial neural networks, 
which have been studied since the middle of the last century. 
Currently, deep learning is an active area of research owing 
to the advent of the big data era, the enhancement of comput-
ing power, and the development of deep learning algorithms. 
Numerous recent studies on deep learning have shown that 
deep learning techniques outperform other machine learning 
algorithms in the fields of image recognition, speech recogni-
tion, bioinformatics, natural language processing, and so on 
[9,10].

Deep learning is a subset of machine learning and is based 
on computational models composed of multiple processing 
layers that learn the representations of data with sequential 
abstraction [9]. In other words, by abstracting the represen-
tation of data sequentially for each layer, multiple process-
ing layers constituting the deep neural network are trained 
for recognition or classification. This can be performed be-
cause a neural network having one or more hidden layers and 
a nonlinear function can approximate arbitrary Borel mea-
surable functions based on the universal approximation theo-
rem [8,11]. Furthermore, in contrast to the human-dependent 
feature selection of machine learning, deep learning archi-
tectures can extract features automatically, resulting in more 
accurate machine learning models.

There are several approaches to deep learning: supervised 
learning that learns using data with labels, unsupervised 
learning that learns using data without labels, and semi-su-
pervised learning that learns using data with and without la-
bels. In this study, we focus on deep learning architectures 
trained exclusively using a supervised approach.

The datasets used for deep learning are classified into 
three types: training, validation, and test datasets. The train-
ing dataset is a set of data used in the training phase, and the 
test dataset is a set of data analyzed using the trained model. 
The validation dataset is a set of data with labels used during 
the training phase to determine whether the training has been 
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performed correctly as the test dataset is not used during 
training. Indeed, the datasets do not have common data.

Deep learning architectures are expressed in (1). A deep 
neural network consists of an input layer, a series of hidden 
layers, and an output layer. The input layer is an identity func-
tion I in (1). The hidden layer is a composite function of a lin-
ear function and a nonlinear function. A hidden layer can be 
expressed as Ai ◦ λi, where Ai is called an activation function. 
The deep learning architecture can contain one or more hidden 
layers as in (1). The sigmoid and rectified linear unit (ReLU) 
functions are representative examples of the activation func-
tion of the hidden layer. The neural network abstracts the repre-
sentations of data through each hidden layer sequentially. The 
output layer is the function S in (1), and an identity function 
or softmax function is commonly used as an output layer. The 
softmax function is defined in (2). The softmax function (or 
normalized exponential function) has the effect of normalizing 
the output nodes so that the sum of all output nodes is equal 
to one while maintaining the magnitude of each node. That is, 
the softmax function creates properties similar to a probability 
density function.

where λi represents linear functions and Ai represents nonlinear 
functions.

Learning or training in deep learning can be interpreted 
as a process of changing the weights of linear functions λi 
such that the neural network can abstract the representation 
of the data. The process of changing the weights is the 
same as solving an optimization problem using a gradient 
descent optimization algorithm and a backpropagation al-
gorithm. The weights are changed to decrease an error, de-
fined as the value of a loss function (or error function, cost 
function, or objective function).* The mean squared error 
(MSE) and cross-entropy are commonly used as cost func-
tions [9]. Training proceeds as follows. First, the output 
values are calculated through the neural network in (1). 
Then, the loss function measures the difference between 
the output value and the label, where the output value refers 
to the value calculated from the actual input value, and the 
label refers to the expected output value. Subsequently, the 
gradient is obtained from an output of the loss function and 
is used to adjust each weight. This process is expressed in 

(3). Various optimizers, such as RMSprop and Adam algo-
rithms, can be used to determine the optimal weights. They 
adjust the weights to the gradients with adaptive learning 
rates [9,12,13].

where Di represents data and Li represents the label correspond-
ing to Di.

In the deep learning architecture, the number of hidden 
layers, the number of nodes in each hidden layer, the activa-
tion function, and the optimizer algorithm are called hyper-
parameters. Hyperparameters are non-trainable parameters 
that can be used to control the behavior of the deep learn-
ing algorithm. There are various methods for optimizing hy-
perparameters, such as a random search, grid search, and a 
search using an evolutionary algorithm [14,15].

There are two typical difficult cases in the training phase. First, 
if the training dataset and validation dataset are small, the loss 
function is likely to be biased. In this case, the validation of hyper-
parameters will be illegitimate. A k-fold cross-validation technique 
can be used to reduce the bias caused by small datasets. Second, 
when the deep learning architecture is trained, its performance can 
be improved only with regard to the training dataset and not the 
validation dataset. This phenomenon is called overfitting, which 
occurs when the weights of the neural network are overtrained 
for the training dataset. Techniques such as weight decay [16,17], 
dropout [18], batch normalization [19], and data augmentation 
[20] are sometimes applied to avoid overfitting. These techniques 
also improve the learning performance of a neural network.

2.2  |  Multilayer perceptron

An MLP is one of the most common forms of a neural net-
work. It is also called a feedforward neural network and has 
the form shown in Figure 1.

(1)f̂ =S◦An◦𝜆n◦An−1◦𝜆n−1◦An−2◦⋯◦A1◦𝜆1◦I

(2)s(x⃗)[i]=
ex⃗[i]

∑

j

ex⃗[j]
.

* All the terms are not the same and have different meanings in some 
machine learning publications. In this article, we consider all the terms to 
have similar meaning.

(3)𝜃̂= arg min
𝜃

(loss(f (Di; 𝜃), Li)) for all i∈ I

F I G U R E  1   Multilayer perceptron architecture
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In MLP, the linear functions λi in (1) take all the nodes in the 
previous layer as input, and the dot products over each weight 
of λi are then computed. Owing to this operation, the layers of 
an MLP are called fully connected layers. The output values of 
the dot products are the input to the activation function Ai. This 
is expressed in (4). The MLP is a neural network represented by 
the superposition of one or more operations with the form given 
in (4). The output of the MLP corresponds to the output of the 
last operation. Depending on the learning objectives, a softmax 
function can be applied:

Although the MLP is the most common deep learning ar-
chitecture, its performance decreases with distorted data. The 
reason for this is that the output value is determined based on 
the numerical value of the input data, without considering the 
data topology.

2.3  |  Convolutional neural network

The prototype for the current CNN was proposed in the 
form of a neocognitron by Kunihiko Fukushima, based 
on the work on the visual cortical structure of animals by 
David H. Hubel and Torsten Wiesel [21,22]. In 1998, Yann 
LeCun and others proposed LeNet for handwriting recog-
nition. LeNet is now considered to represent the origin of 
modern CNN architectures. LeNet combines the concepts 
of shared weights, subsampling, and backpropagation al-
gorithms [23,24]. AlexNet is another example of a CNN 
structure with good results [25]. When these CNN struc-
tures outperformed the traditional machine learning algo-
rithms in visual recognition, the CNN was applied more 
broadly to various fields. Indeed, the CNN continues to 
gain popularity because of its high performance.

As stated previously, the performance of the MLP de-
grades when a distortion occurs, as it handles numerical val-
ues without considering the topology of the input data. As 
the CNN uses properties such as shared weights and subsa-
mpling, it maintains the invariance of the representations of 
data even when distortion occurs.

The CNN structure can be depicted as in Figure 2. A CNN is 
an architecture formed by superimposing convolutional layers 
and pooling layers in front of fully connected layers. The convo-
lutional layer is a specialized kind of linear operation, and it op-
erates as shown in Figure 3. All the values for a feature map [9] 
are obtained through a convolutional filter. That is, all the values 
of the feature map are calculated using the shared weight. Then, 
all the values of the feature maps enter the activation function 
directly. The pooling layer is usually placed after the convolu-
tional layer and activation function. The primary function of the 
pooling layer is to reduce the size of the feature map extracted 

from the convolutional layer. The pooling layer can be viewed 
as a resampling method, and Max pooling and average pooling 
are mainly used in the pooling layer. Max pooling reduces the 
size of the feature map by selecting the maximum value of the 
target range, whereas average pooling selects the average value 
of the target range. In the CNN architecture, the superposition 
of convolutional layers and pooling layers plays the role of ex-
tracting features.

3  |   SIDE-CHANNEL ANALYSIS

Although the cryptographic algorithm has been proven to 
be secure, naive implementation can leak the secret infor-
mation through side-channel leakages such as time, power 
consumption, and electromagnetic emissions. These un-
intended leakages are due to the physical properties of an 
electronic device. Such physically observable phenomena 
are determined by the operation and the data being pro-
cessed. In this article, we refer to the “sampled leakage” 
as a trace or waveform. A captured trace contains features 
that reflect the operation of a device and the processed data. 
SCA is any attack using such phenomena from implementa-
tion. Since its introduction in 1996 by Kocher [1], SCA has 
been considered a practical and powerful attack. Although 
many factors support this consideration, a particular fac-
tor is that it is possible to adopt the divide-and-conquer 
approach. This approach reduces computation complexity 

(4)Xn =An

(

Wn Xn−1+bn

)

.

F I G U R E  2   Convolutional neural networks architecture
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2 0 0 1 1

2 2 0 1 1

2 2 1 1 2

1 2 2 1 2

2 2 0 1 0

0 1 0

0 0 -1

-1 1 1

1 2 0 2 0

2 1 1 2 1

1 0 2 0 1

2 0 0 2 0

2 2 2 0 1

-1 1 0

1 -1 0

-1 0 1

1

1

5 -2 3

5 1 4

2 0 -5

Data
(5 × 5 × 2) Filter W0

(3 × 3 × 2)[: , ∶, 0]

[: , ∶, 1]

[: , ∶, 0]

[: , ∶, 1]

Bias b0
(1 × 1 × 1)
[: , : , 0]

Feature map
(3 × 3 × 2)

[: , ∶, 0]

-1 0 1

0 0 -1

-1 -1 -1

-1 0 0

-1 -1 0

1 1 0

0

Filter W1
(3 × 3 × 2)

[: , ∶, 0]

[: , ∶, 1]

Bias b1
(1 × 1 × 1)
[: , : , 0]

-3 0 0

-3 -10 -4

3 -9 -2

[: , ∶, 1]

⋯

Convolutional filter

2 0 0 1 1

2 2 0 1 1

2 2 1 1 2

1 2 2 1 2

2 2 0 1 0

0 1 0

0 0 -1

-1 1 1

1 2 0 2 0

2 1 1 2 1

1 0 2 0 1

2 0 0 2 0

2 2 2 0 1

-1 1 0

1 -1 0

-1 0 1



296  |      JIN et al.

remarkably compared with theoretical attacks against cryp-
tographic algorithms.

SCA is categorized into non-profiling and profiling attacks, 
according to the environment provided to an attacker. In this 
section, we explain the non-profiling attack, profiling attack, 
SCA countermeasures, and issues related to advanced attacks 
briefly.

3.1  |  Non-profiling attack

Non-profiling attacks assume that an attacker can only ac-
quire traces from the target equipment. Depending on the 
number of traces required for the attack, non-profiling at-
tacks are divided into two types. The first type guesses the 
secret information with one or only a few traces. Simple 
power analysis (SPA) [1,2] is a representative attack of 
the first type. SPA can deduce secret information from one 
or only a few traces obtained during the execution of an 
algorithm.

The second type guesses secret information through 
statistical analysis. Differential power analysis (DPA) [2], 
correlation power analysis (CPA) [26], and mutual in-
formation analysis [27] are examples of the second type. 
These attacks calculate hypothetical leakages for each pos-
sible key using power models such as Hamming weight 
and Hamming distance. Then, the key is inferred through 
a comparison between actual leakages and hypothetical 
leakages. For this comparison, statistical methods are used, 
such as a calculation of the difference of the mean between 
groups, the correlation coefficient, and cross-entropy. As 
statistical methods are used for these analyses, this type of 
attack exploits many traces. Especially in these kinds of 
attacks, trace alignment is a necessary step prior to attack 
[3,28,29].

3.2  |  Profiling attack

Profiling attacks assume that an attacker has a programmable 
device identical to the target device. This programmable device 
is called a profiling device. An attacker can use this device to 
learn and exploit the physical properties of the profiling device 
to extract the secret information of the target device. Profiling 
attacks include template attack [30] and stochastic model [31].

Template attacks extract the information corresponding to 
the attack point with the profiling equipment. The subtraces of 
traces corresponding to the attack point form a certain distribu-
tion. Template attack assumes that such subtraces for a datum 
follow a multivariate Gaussian distribution. The attacker es-
timates the mean and covariance matrix of the subtraces for 
each possible intermediate data group. This process is called 
the profiling phase. After the profiling phase, an attacker infers 

data from the trace obtained from the target device through the 
maximum likelihood approach. This step is called the attack 
phase. The attacker can infer the key from the data obtained in 
the attack phase. Similar to non-profiling attack, it is necessary 
to align traces. In addition, as the number of attack points used 
increases, the complexity increases exponentially. To mitigate 
such problems, methods applying dimension reduction such as 
principal component analysis (PCA) and linear discriminant 
analysis (LDA) have been proposed [32,33]. Furthermore, to 
avoid numerical obstacles such as the inverse of the covariance 
matrix, the pooled covariance matrix has been proposed to be 
used for all intermediate values [34].

3.3  |  Countermeasures

Side-channel analysis countermeasures are categorized into 
masking and hiding [3]. First, masking countermeasures ren-
der statistical analysis impossible by randomizing the inter-
mediate values [35,36]. To make intermediate values appear 
random, actual random values are selected from a uniform 
distribution and are then combined with the intermediate 
values. Random values conceal all the intermediate values 
during cryptographic operations. The random values are then 
removed during the last step to produce the intended output. 
Second, hiding countermeasures reduce the signal-to-noise 
ratio (SNR) to make leakages unrelated to data or operations. 
They are realized through misalignment by injecting random 
jitters and a change in internal operation order [37‒39]. An al-
ternative method is producing constant waveforms regardless 
of the processed data using hardware dual-rail or software 
encoding techniques [40‒43]. Just as naive implementa-
tions can be vulnerable to SCA, side-channel vulnerabilities 
can occur in the implementation of SCA countermeasures. 
Hence, realizations of SCA countermeasures must be imple-
mented and evaluated through methods such as test vector 
leakage assessment (TLVA) [44].

Despite these countermeasures, SCA attackers can attack 
using advanced methods with more complexity. Second-order 
and higher order differential power analyses have been pro-
posed to defeat masking countermeasures. Second-order and 
higher-order power analyses are methods based on the prop-
erty that the actual leakages corresponding to the intermediate 
value can be extracted by combining the samples of the trace 
relating to the intermediate value [45,46]. However, these sec-
ond-order and higher order attacks require finding points to 
be combined, which involves human engineering, that is the 
performance of the attack depends on the maturity of the at-
tacker. Moreover, as noise is included in the traces, an attacker 
cannot obtain 100% of the actual leakage corresponding to 
the intermediate value. Furthermore, noise exponentially in-
creases the number of traces required for an attack. To perform 
SCA to defeat hiding countermeasures, increasing the SNR is 
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necessary. The SNR can be improved through pre-processing 
steps such as noise reduction, alignment, and superimposition 
of the waveforms [3,28,29,47‒49].

4  |   DEEP LEARNING-BASED 
SIDE-CHANNEL ANALYSIS

Leakage pre-processing is essential in SCA, as sampled 
leakage is noisy and statistical methods must be applied to 
multiple traces. Misaligned traces or noise in the collected 
traces decrease the correlation between the traces and the 
processed data of the device. Therefore, noise reduction, 
alignment, and dimension reduction must be performed prior 
to SCA. Moreover, points of interest (POI)—significant fea-
tures in the trace—must be selected. In short, pre-processing 
and POI selection are the most critical steps that affect the 
performance of SCA. Similarly, SCA using machine learn-
ing techniques, such as k-means clustering, support vector 
machine, and random forest, also requires pre-processing 
and POI selection. As pre-processing and POI selection re-
quire human engineering, they significantly impact the re-
sults [50‒56].

By contrast, deep learning techniques select features 
automatically from data. Therefore, when deep learning is 
applied to SCA, it is less affected by pre-processing and 
POI selection. Indeed, studies have shown that, when deep 
learning is adopted, it is possible to analyze data without 
the steps required by classical SCA and machine learn-
ing-based SCA.

The general learning strategy for DLSCA is shown in Figure 4. 
The traces are used as input data, and the intended output values 
that an attacker wishes to extract from the trace are used as the 
labels. The labels can be viewed as output values of the Sbox or 
the Hamming weight of the Sbox output value. The form of the 
label changes depending on the learning objective. In the case of 
classification, as the Sbox output values or their Hamming weights 
are categorical data, they can be converted by one-hot encoding 
(one-hot code) and used as labels [9]. In the case of regression, 
the values themselves can be used. In Figure 4, S(Pi + K) is an 
output of SubByte of exclusive-or between input and key such as 
advanced encryption standard (AES) SubBytes for classification.

In this section, we describe the application methods and 
characteristics of DLSCA based on deep learning architec-
tures, namely, the MLP, CNN, and recent approaches. The 
DLSCA introduced in this section used the classification 
property of deep learning, unless explicitly stated otherwise.

4.1  |  MLP-based profiling side-
channel analysis

The MLP was the first neural network architecture applied to 
SCA owing to its structural simplicity. Studies have shown 
that the MLP can potentially enhance the performance of SCA. 
The first MLP-based SCA was performed by using regression 
to characterize leakage. More recently, MLP has been mostly 
used to classify the intermediate value of the trace.

Yang and others were the first to use the MLP as regres-
sion to characterize the power model of the Sbox output of 
the AES [57]. The choice of power models has a significant 
impact on the performance of attacks such as CPA. The 
Hamming weight and Hamming distance models are fre-
quently used as a power model. For a leakage model, leakage 
characterization and average traces are occasionally used, 
because they are more similar to the actual leakage model 
than the Hamming weight or Hamming distance [3,58,59]. 
In [57], an MLP was trained using the Sbox output value and 
real power trace as the data and label, respectively. Then, the 
trained MLP was used as a power model function to improve 
the performance of CPA.

Martinasek and others were the first to use an MLP to cat-
egorize the Sbox output value from a trace [60]. They trained 
an MLP against an unprotected AES with its power traces 
and Sbox outputs. Since then, earlier works of MLP-based 
SCA have not used raw traces but have used pre-processed 
traces through average trace reduction, a wavelet transform, 
and PCA to improve the performance of the attack [61‒63]. 
However, later works have confirmed that a DLSCA can 
achieve good performance even when raw traces are used 
as input data. For example, Maghrebi and others presented 
the results of experiments suggesting that an MLP without 
PCA outperforms an MLP with PCA [64]. Consequently, raw 
traces were used as inputs in subsequent studies.

F I G U R E  4   Example of a structure 
from deep learning-based side-channel 
attack. Traces and intermediate values are 
used as data and labels, respectively
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There are ongoing studies that compare the performance 
of classical profiling attacks with that of deep learning-based 
profiling attacks. In [64,65], the performances of a classical 
template attack and an MLP-based attack were compared. In 
2016, Maghrebi and others conducted experiments on both AES 
hardware and software implementations, analyzing their perfor-
mance when implementing a template attack, random forest, 
MLP, CNN, autoencoder, and long short-term memory (LSTM) 
[64]. They demonstrated that unprotected AES hardware and 
software implementations can be analyzed with an MLP.

It has also been shown that first-order masked AES can be 
analyzed using an MLP [62,66,67]. For instance, Martinasek 
and other sanalyzed a masked AES software implementation 
using an MLP. They proposed two methods for analyzing an 
AES-rotating Sbox masking (RSM) implementation using an 
MLP on a publicly available dataset—the DPA contest v4 and 
v4.2 [68]. The first method used the MLP to find the masking 
information used in the RSM. Then, CPA was performed on 
the masked Sbox output value using the masking information 
obtained through the MLP. The second method used an MLP 
to identify the output value of the RSM from the trace, given 
the masking information obtained earlier through template 
attacks. Maghrebi and others were the first to confirm that 
first-order masked AES software can be analyzed by using 
only an MLP [64]. In other words, the MLP can identify the 
original Sbox output without any knowledge of the masking 
information.

4.2  |  CNN-based profiling side-
channel analysis

Unlike an MLP, which uses only numerical values without 
considering the data topology, a CNN has a structural prop-
erty that is more robust to data distortions. For example, it is 
widely known that a CNN offers good performance for image 
recognition, despite considerable data distortions. In the case 
of SCA, traces are distorted owing to the noise resulting from 
the measurement environment and side-channel counter-
measures. Therefore, it is natural to apply a CNN to SCA.

As mentioned earlier, Maghrebi and others applied 
the CNN architecture to SCA [64]. Cagli and others then 
proposed a CNN-based SCA on a protected AES with jit-
ter-based hiding methods [69]. They were the first to show 
that a CNN could be used to neutralize jitter-based hiding 
countermeasures without any other pre-processing. In [69], 
through experimentation with learning the Sbox output of 
AES protected by random delay insertion and clock jitter, 
the robustness of a CNN to data distortions was demon-
strated. Although CNN has fewer weights to train than MLP, 
it requires ample learning data to learn the general invari-
ant features of the traces from a device protected by a hiding 
method. To deal with insufficient training data and to prevent 

overfitting, they also proposed a data augmentation technique 
to defeat hiding countermeasures. Specifically, jitter-based 
hiding methods were simulated by randomly shifting real 
traces and by inserting/removing a certain number of random 
points on real traces. These simulated traces were used as 
additional training data. Consequently, they confirmed that 
the training data were sufficiently increased for learning. 
Through their analysis, it was established that CNN-based 
SCA does not require pre-processing steps such as trace 
alignment. Their result indicates that CNN-based SCA can 
also be used to evaluate side-channel resistance objectively.

A study has shown that CNN with additional input neu-
rons enhances the performance of DLSCA. Note that CNN 
is composed of two basic parts: feature extraction and fea-
ture classification/regression based on the extracted fea-
ture. Hettwer and others proposed a CNN architecture with 
domain knowledge (DK) neurons [70]. DK neurons are 
used as an additional input to the fully connected layer—
as additional inputs for feature classification/regression. 
Their experiments were based on the assumption that this 
additional information can be used to improve the learning 
performance. The results in [70] showed that the adoption 
of the DK neurons improved the performance. In addition, 
they observed that learning the round key outperforms the 
case of learning the output of the Sbox. However, further 
investigation is required as they did not provide compre-
hensive reasoning regarding why learning the round key as 
a label shows a better performance than learning the Sbox 
output.

Instead of using raw power trace as input data, a technique 
involving transforming the power trace and using it as input 
data have also been proposed. On the one hand, Yang and 
others proposed a technique that uses the short-time Fourier 
transform to transform the power trace in one-dimensional 
data into a spectrogram expressed in time-frequency repre-
sentation and used the spectrogram as input data [71]. They 
claimed that the spectrogram is more suitable for CNN be-
cause it contains the features of time and frequency informa-
tion simultaneously. Experiments show that DLSCA using 
spectrograms can be similar to or better than DLSCA using 
power traces in the time domain. On the other hand, Kim 
and others proposed a method that adds artificial noise to the 
input trace for the robustness of DLSCA, similar to denoising 
autoencoder [72].

Carbone and others proposed CNN-based profiled SCA 
against a secure RSA implementation with message, expo-
nent, and modulus blinding [73] as side-channel countermea-
sures [74]. Their work was the first DLSCA against public key 
cryptosystems. They used a CNN architecture to classify the 
address or value of the register. Their experiments showed that 
public key cryptosystems can also be analyzed using DLSCA.

After the CNN-based DLSCA technique was proposed, 
studies were conducted to compare the performance of 
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CNN-based SCA and other profiling SCA [75,76]. The 
ASCAD public dataset was proposed to compare the per-
formances of DLSCA and other profiling SCA methods ob-
jectively [77]. In addition, reproducibility has begun to be 
emphasized, for example, by disclosing specific hyperparam-
eters to make the results of previous studies available.

4.3  |  Latest research direction on side-
channel analysis using deep learning

To the best of our knowledge, three new directions for 
DLSCA have been proposed recently. These new approaches 
exploited the learning process of deep learning for SCA, 
rather than focusing solely on the input and output functions 
of the classification or regression processes.

The first direction is side-channel leakage detection using 
deep learning, independently proposed by Masure and others, 
Hettwer and others, and Timon. Whereas Masure and others 
and Hettwer and others proposed deep learning-based leakage 
detection methods for a profiled scenario, Timon proposed a 
technique for a non-profiled situation. In [78], by accumulat-
ing the absolute values of the weights of the first layer of the 
MLP, an attacker can determine on which points the leakage 
occurred. A disadvantage is that it is difficult to apply this 
method in a CNN architecture. Sensitivity analysis can be 
used for leakage detection using a CNN [78,79]. Generally, 
sensitivity analysis is used to understand the operation of a 

mathematical model. In DLSCA, sensitivity analysis can be 
used for leakage detection and as a new indicator of whether a 
neural network has learned.

In [79], Masure and others proposed selecting POI using 
sensitivity analysis. Whereas classical POI selection uses 
the SNR, the POI selection method proposed by these au-
thors is based on a leakage detection method called gradient 
visualization. They confirmed that there are differences be-
tween the SNR and gradient visualization in terms of POI 
selection. To compare the classical POI selection method 
with their proposed gradient visualization technique, tem-
plate attacks were performed with different POI selection 
methods. The results from [79] illustrated that template at-
tacks perform better when using the gradient visualization 
technique to select POI.

A leakage analysis technique using attribution meth-
ods was proposed in a profiled scenario [80]. Attribution 
methods were used to analyze how each component of 
input datum influences the output. Hettwer and others 
used such attribution methods for leakage analysis, and 
presented three attribution methods, which are based on 
the saliency map [81], layer-wise relevance propagation 
[82], and occlusion sensitivity analysis [83]. These meth-
ods detect leakage and are used to select POI in a simi-
lar manner as the aforementioned gradient visualization 
technique. Additionally, Hettwer and others proposed the 
usage of the attribution method as an SCA distinguisher. 
According to the value of the output node, different 

F I G U R E  5   Results of attack on unprotected implementation with de-synchronization [78]. (A) CNN-DDLA accuracy. (B) CNN-DDLA 
input-based sensitivity. (C) MLP-DDLA accuracy. (D) CPA
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properties of attribution are observed. Based on these 
properties, it is possible to find the key using the attribu-
tion method.

The second direction is a deep learning-based non-pro-
filing SCA technique. Timon was the first to propose a 
non-profiling method called differential deep learning 
analysis (DDLA), which exploits the fact that whether a 
neural network is trained depends on whether the key is 
correctly guessed [78]. DDLA uses the trace and interme-
diate value as the input and label, respectively. As DDLA 
is a partition-based SCA, intermediate values that are the 
output of injective functions such as MSB and LSB, or the 
Hamming weight of intermediate values must be used as 
a label. The output of the injective function reflects the 
partition class well according to the key guess. Similar to 
DPA and CPA, in DDLA, the intermediate value is com-
puted through the guessed round key and is used as a label. 
Note that an intermediate value calculated with the wrong 
key is unrelated to the trace such that the neural network 
will not be trained on the traces. However, when the inter-
mediate value computed through the right key is related to 
the trace, the neural network can be trained. Based on this 
examination, after training the neural network for each key 
guess, an attacker can determine the correct key by observ-
ing the variation of a metric such as the accuracy or output 
of a loss function.

Timon experimentally verified that CNN-based DDLA 
can be used against both masking and hiding countermea-
sures. Figure 5 shows the performance of DDLA and CPA 
when an MLP and CNN are used for DDLA to analyze AES 
with hiding countermeasures. As has been repeatedly empha-
sized previously, CNN-based SCA does not require pre-pro-
cessing in the non-profiled scenario. Moreover, as depicted 
in Figures 5 and 6, DDLA can detect leakage with sensitiv-
ity analysis in a non-profiled scenario. Although DDLA has 
the advantage that it can be implemented in a non-profiled 
scenario, suitable hyperparameters must be determined and 
set. Furthermore, an attacker must train the neural network in 
proportion to the number of keys.

The third direction is the usage of a neural network as 
a trace encoder for non-profiling SCA. Robyns and others 
proposed a correlation optimization technique for improv-
ing correlation electromagnetic analysis (CEMA) [84]. For 
key recovery through CEMA, only one time sample for 
each trace is important. Accordingly, they trained a neu-
ral network that uses trace as the input, a sample as the 
output for each byte for regression, and the constraint to 
maximize the correlation between the output and interme-
diate value as a loss function. Through such training, the 
neural network becomes the encoding function that outputs 
a single sample to maximize the performance of CEMA. 
They conducted experiments on CEMA using correlation 
optimization. Their experiments indicated that CEMA can 
outperform CNN-based classification, using correlation op-
timization even with shallow MLP and transformed traces, 
which are desynchronized traces transformed into the fre-
quency domain.

5  |   CONCLUSION AND FUTURE 
WORKS

In this study, we surveyed recent, state-of-the-art advances in 
DLSCA. We confirmed that an MLP and CNN are effective 
for SCA even without pre-processing. We also surveyed new 
approaches for applying deep learning algorithms to non-
profiling attacks, leakage detection, and leakage encoder. To 
provide a comprehensive overview, we summarized our find-
ings in Table 1.

Owing to the characteristics of deep learning algorithms, 
DLSCA does not require pre-processing. This makes it suit-
able as a tool for evaluating side-channel resistance objectively. 
However, as most of the studies focus on profiling attacks, ad-
ditional studies dealing with the following aspects are required.

First, a comprehensive study of the application of deep 
learning in SCA is required to interpret why the neural net-
work is effective for SCA. Previous studies only confirmed 
that deep learning algorithms enhance SCA performance 

F I G U R E  6   Results of MLP-DDLA attack on ASCAD [78]. (A) Accuracy, (B) Inputs-based sensitivity, and (C) CPA reverse engineering
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through various experiments. Understanding the exact reason 
is crucial to remove leakage issues that currently lead to per-
formance issues.

Second, an efficient hyperparameter search method is 
required for SCA. The performance of SCA cannot benefit 
from using a deep learning algorithm if the hyperparameter 
is not selected properly, and searching for a suitable hyperpa-
rameter is expensive. Hence, studies should examine an effi-
cient hyperparameter search method for SCA.

Third, other deep learning architectures must be ex-
plored. Many other deep learning architectures exist, and 
each architecture offers different properties. DLSCA can 
benefit significantly from an intensive survey of existing 
architectures.

As a final note, we thank the authors of prior studies on 
DLSCA.
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