• Title/Summary/Keyword: Machine classification

Search Result 2,100, Processing Time 0.034 seconds

Medical Image Automatic Annotation Using Multi-class SVM and Annotation Code Array (다중 클래스 SVM과 주석 코드 배열을 이용한 의료 영상 자동 주석 생성)

  • Park, Ki-Hee;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.281-288
    • /
    • 2009
  • This paper proposes a novel algorithm for the efficient classification and annotation of medical images, especially X-ray images. Since X-ray images have a bright foreground against a dark background, we need to extract the different visual descriptors compare with general nature images. In this paper, a Color Structure Descriptor (CSD) based on Harris Corner Detector is only extracted from salient points, and an Edge Histogram Descriptor (EHD) used for a textual feature of image. These two feature vectors are then applied to a multi-class Support Vector Machine (SVM), respectively, to classify images into one of 20 categories. Finally, an image has the Annotation Code Array based on the pre-defined hierarchical relations of categories and priority code order, which is given the several optimal keywords by the Annotation Code Array. Our experiments show that our annotation results have better annotation performance when compared to other method.

No-Reference Image Quality Assessment Using Complex Characteristics of Shearlet Transform (쉬어렛 변환의 복소수 특성을 이용하는 무참조 영상 화질 평가)

  • Mahmoudpour, Saeed;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.380-390
    • /
    • 2016
  • The field of Image Quality Measure (IQM) is growing rapidly in recent years. In particular, there was a significant progress in No-Reference (NR) IQM methods. In this paper, a general-purpose NR IQM algorithm is proposed based on the statistical characteristics of natural images in shearlet domain. The method utilizes a set of distortion-sensitive features extracted from statistical properties of shearlet coefficients. A complex version of the shearlet transform is employed to take advantage of phase and amplitude features in quality estimation. Furthermore, since shearlet transform can analyze the images at multiple scales, the effect of distortion on across-scale dependencies of shearlet coefficients is explored for feature extraction. For quality prediction, the features are used to train image classification and quality prediction models using a Support Vector Machine (SVM). The experimental results show that the proposed NR IQM is highly correlated with human subjective assessment and outperforms several Full-Reference (FR) and state-of-art NR IQMs.

Classification of the Front Body of a Missile and Debris in Boosting Part Separation Phase Using Periodic and Statistical Properties of Dynamic RCS (동적 RCS의 주기성과 통계적 특성을 이용한 기두부와 단 분리 시 조각들의 구분)

  • Choi, Young-Jae;Choi, In-Sik;Shin, Jinwoo;Chung, Myungsoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.540-549
    • /
    • 2018
  • Classifying the front body of the missile and debris of a high-speed missile in intercepting a high-speed missile is an important issue. The motion of the front body of the missile is characterized by precession, but the motion of the debris in the boosting part separation phase is characterized by tumbling. There are periodic patterns caused by the precession or tumbling motion on the dynamic radar cross section (RCS). In addition, there are statistical properties caused by the change pattern of the dynamic RCS. A method is proposed to classify the front body of the missile and debris using periodic and statistical properties of the dynamic RCS. Three kinds of feature vector are extracted from the periodic and statistical properties of the dynamic RCS. The front body of the missiles and debris was classified using a support vector machine.

Prediction of Diabetic Nephropathy from Diabetes Dataset Using Feature Selection Methods and SVM Learning (특징점 선택방법과 SVM 학습법을 이용한 당뇨병 데이터에서의 당뇨병성 신장합병증의 예측)

  • Cho, Baek-Hwan;Lee, Jong-Shill;Chee, Young-Joan;Kim, Kwang-Won;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.355-362
    • /
    • 2007
  • Diabetes mellitus can cause devastating complications, which often result in disability and death, and diabetic nephropathy is a leading cause of death in people with diabetes. In this study, we tried to predict the onset of diabetic nephropathy from an irregular and unbalanced diabetic dataset. We collected clinical data from 292 patients with type 2 diabetes and performed preprocessing to extract 184 features to resolve the irregularity of the dataset. We compared several feature selection methods, such as ReliefF and sensitivity analysis, to remove redundant features and improve the classification performance. We also compared learning methods with support vector machine, such as equal cost learning and cost-sensitive learning to tackle the unbalanced problem in the dataset. The best classifier with the 39 selected features gave 0.969 of the area under the curve by receiver operation characteristics analysis, which represents that our method can predict diabetic nephropathy with high generalization performance from an irregular and unbalanced dataset, and physicians can benefit from it for predicting diabetic nephropathy.

Hand Gesture Interface Using Mobile Camera Devices (모바일 카메라 기기를 이용한 손 제스처 인터페이스)

  • Lee, Chan-Su;Chun, Sung-Yong;Sohn, Myoung-Gyu;Lee, Sang-Heon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.621-625
    • /
    • 2010
  • This paper presents a hand motion tracking method for hand gesture interface using a camera in mobile devices such as a smart phone and PDA. When a camera moves according to the hand gesture of the user, global optical flows are generated. Therefore, robust hand movement estimation is possible by considering dominant optical flow based on histogram analysis of the motion direction. A continuous hand gesture is segmented into unit gestures by motion state estimation using motion phase, which is determined by velocity and acceleration of the estimated hand motion. Feature vectors are extracted during movement states and hand gestures are recognized at the end state of each gesture. Support vector machine (SVM), k-nearest neighborhood classifier, and normal Bayes classifier are used for classification. SVM shows 82% recognition rate for 14 hand gestures.

An Enhanced Feature Selection Method Based on the Impurity of Words Considering Unbalanced Distribution of Documents (문서의 불균등 분포를 고려한 단어 불순도 기반 특징 선택 방법)

  • Kang, Jin-Beom;Yang, Jae-Young;Choi, Joong-Min
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.9
    • /
    • pp.804-816
    • /
    • 2007
  • Sample training data for machine learning often contain irrelevant information or redundant concept. It is also the case that the original data may include noise. If the information collected for constructing learning model is not reliable, it is difficult to obtain accurate information. So the system attempts to find relations or regulations between features and categories in the teaming phase. The feature selection is to remove irrelevant or redundant information before constructing teaming model. for improving its performance. Existing feature selection methods assume that the distribution of documents is balanced in terms of the number of documents for each class and the length of each document. In practice, however, it is difficult not only to prepare a set of documents with almost equal length, but also to define a number of classes with fixed number of document elements. In this paper, we propose a new feature selection method that considers the impurities among the words and unbalanced distribution of documents in categories. We could obtain feature candidates using the word impurity and eventually select the features through unbalanced distribution of documents. We demonstrate that our method performs better than other existing methods via some experiments.

A Study on Object Classification Using IR-UWB (IR-UWB를 이용한 물체 분류에 관한 연구)

  • Gam, Ji-Hyeon;Jeong, Jae-Hoon;Byun, Gi-Sig;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.88-90
    • /
    • 2018
  • There are many studies on IR-UWB Radar. A number of studies have been conducted on the Personnel count and measurement distance to person, mainly using IR-UWB. In this paper, however, we use IR-UWB Radar to distinguish objects. In order to distinguish these objects, in this paper, the IR-UWB radar is operated by positioning the object at a certain distance and the object is classified by using the size and shape of the wave reflected by the object. To distinguish objects using only the size and shape of these waveforms, SVM (Support Vector Machine) was used to classify objects by learning shape and size of waveforms. In this paper, we show that the size and shape of the waveform received by the IR-UWB Radar can be identified by SVM pattern learning.

  • PDF

A novel on Data Prediction Process using Deep Learning based on R (R기반의 딥 러닝을 이용한 데이터 예측 프로세스에 관한 연구)

  • Jung, Se-hoon;Kim, Jong-chan;Park, Hong-joon;So, Won-ho;Sim, Chun-bo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.421-422
    • /
    • 2015
  • Deep learning, a deepen neural network technology that demonstrates the enhanced performance of neural network analysis, has been getting the spotlight in recent years. The present study proposed a process to test the error rates of certain variables and predict big data by using R, a analysis visualization tool based on deep learning, applying the RBM(Restricted Boltzmann Machine) algorithm to deep learning. The weighted value of each dependent variable was also applied after the classification of dependent variables. The investigator tested input data with the RBM algorithm and designed a process to detect error rates with the application of R.

  • PDF

Comparison of data mining methods with daily lens data (데일리 렌즈 데이터를 사용한 데이터마이닝 기법 비교)

  • Seok, Kyungha;Lee, Taewoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1341-1348
    • /
    • 2013
  • To solve the classification problems, various data mining techniques have been applied to database marketing, credit scoring and market forecasting. In this paper, we compare various techniques such as bagging, boosting, LASSO, random forest and support vector machine with the daily lens transaction data. The classical techniques-decision tree, logistic regression-are used too. The experiment shows that the random forest has a little smaller misclassification rate and standard error than those of other methods. The performance of the SVM is good in the sense of misclassfication rate and bad in the sense of standard error. Taking the model interpretation and computing time into consideration, we conclude that the LASSO gives the best result.

Performance and Root Mean Squared Error of Kernel Relaxation by the Dynamic Change of the Moment (모멘트의 동적 변환에 의한 Kernel Relaxation의 성능과 RMSE)

  • 김은미;이배호
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.788-796
    • /
    • 2003
  • This paper proposes using dynamic momentum for squential learning method. Using The dynamic momentum improves convergence speed and performance by the variable momentum, also can identify it in the RMSE(root mean squared error). The proposed method is reflected using variable momentum according to current state. While static momentum is equally influenced on the whole, dynamic momentum algorithm can control the convergence rate and performance. According to the variable change of momentum by training. Unlike former classification and regression problems, this paper confirms both performance and regression rate of the dynamic momentum. Using RMSE(root mean square error ), which is one of the regression methods. The proposed dynamic momentum has been applied to the kernel adatron and kernel relaxation as the new sequential learning method of support vector machine presented recently. In order to show the efficiency of the proposed algorithm, SONAR data, the neural network classifier standard evaluation data, are used. The simulation result using the dynamic momentum has a better convergence rate, performance and RMSE than those using the static moment, respectively.

  • PDF