• Title/Summary/Keyword: Machine Status

Search Result 428, Processing Time 0.02 seconds

Computer vision and deep learning-based post-earthquake intelligent assessment of engineering structures: Technological status and challenges

  • T. Jin;X.W. Ye;W.M. Que;S.Y. Ma
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.311-323
    • /
    • 2023
  • Ever since ancient times, earthquakes have been a major threat to the civil infrastructures and the safety of human beings. The majority of casualties in earthquake disasters are caused by the damaged civil infrastructures but not by the earthquake itself. Therefore, the efficient and accurate post-earthquake assessment of the conditions of structural damage has been an urgent need for human society. Traditional ways for post-earthquake structural assessment rely heavily on field investigation by experienced experts, yet, it is inevitably subjective and inefficient. Structural response data are also applied to assess the damage; however, it requires mounted sensor networks in advance and it is not intuitional. As many types of damaged states of structures are visible, computer vision-based post-earthquake structural assessment has attracted great attention among the engineers and scholars. With the development of image acquisition sensors, computing resources and deep learning algorithms, deep learning-based post-earthquake structural assessment has gradually shown potential in dealing with image acquisition and processing tasks. This paper comprehensively reviews the state-of-the-art studies of deep learning-based post-earthquake structural assessment in recent years. The conventional way of image processing and machine learning-based structural assessment are presented briefly. The workflow of the methodology for computer vision and deep learning-based post-earthquake structural assessment was introduced. Then, applications of assessment for multiple civil infrastructures are presented in detail. Finally, the challenges of current studies are summarized for reference in future works to improve the efficiency, robustness and accuracy in this field.

Research Trend of Real-Time Measurement for Acting Force of TBM Disc Cutter (TBM 디스크커터의 실시간 하중 계측을 위한 연구현황)

  • Gyeongmin Ki;Jung-Joo Kim;Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.244-254
    • /
    • 2023
  • The disc cutter mounted on the Tunnel Boring Machine (TBM) is subjected to cutting forces in three dimensions during rock excavation process. It is widely known that the cutting forces increased with the strength of the rock mass, while the rolling force can be significantly increased when the disc cutter encounters abnormal rotation. Therefore, the cutting force acts on the disc cutter provides important information because it represents the conditions of the rock mass and the disc cutter. For these reasons, several studies have been conducted to measure the cutter forces in real-time. This paper introduces the current status of research on the cutter force measurement of TBM disc cutters, which has been reported in the literature. It is judged that this paper can be a useful reference material when similar technologies are developed in Korea in the future.

Development of Dog Name Recommendation System for the Image Abstraction (이미지 추상화 기법을 이용한 반려견 이름 추천 시스템 개발)

  • Jae-Heon Lee;Ye-Rin Jeong;Mi-Kyeong Moon;Seung-Min Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.313-320
    • /
    • 2023
  • The cumulative registration status of dogs is from 1.07 million in 2016 to 2.32 million in 2020. Animal registration is increasing by more than 10% every year, and accordingly, a name must be decided when registering a dog. We want to give a name that fits the characteristics of a dog's appearance, but there are many difficulties in naming it. This paper explains the development of a system for recognizing dog images and recommends dog names based on similar objects or food. This system extracts similarities with dogs' images through models that learn images of various objects and foods, and recommends dog names based on similarities. In addition, by recommending additional related words based on the image data of the result value, it was possible to provide users with various options, increase convenience, and increase interest and fun. Through this system, it is expected that users will be able to solve their concerns about naming their dogs, check names that suit their dogs comfortably, and give them various options through various recommended names to increase satisfaction.

A Comparative Study of Predictive Factors for Hypertension using Logistic Regression Analysis and Decision Tree Analysis

  • SoHyun Kim;SungHyoun Cho
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.2
    • /
    • pp.80-91
    • /
    • 2023
  • Objective: The purpose of this study is to identify factors that affect the incidence of hypertension using logistic regression and decision tree analysis, and to build and compare predictive models. Design: Secondary data analysis study Methods: We analyzed 9,859 subjects from the Korean health panel annual 2019 data provided by the Korea Institute for Health and Social Affairs and National Health Insurance Service. Frequency analysis, chi-square test, binary logistic regression, and decision tree analysis were performed on the data. Results: In logistic regression analysis, those who were 60 years of age or older (Odds ratio, OR=68.801, p<0.001), those who were divorced/widowhood/separated (OR=1.377, p<0.001), those who graduated from middle school or younger (OR=1, reference), those who did not walk at all (OR=1, reference), those who were obese (OR=5.109, p<0.001), and those who had poor subjective health status (OR=2.163, p<0.001) were more likely to develop hypertension. In the decision tree, those over 60 years of age, overweight or obese, and those who graduated from middle school or younger had the highest probability of developing hypertension at 83.3%. Logistic regression analysis showed a specificity of 85.3% and sensitivity of 47.9%; while decision tree analysis showed a specificity of 81.9% and sensitivity of 52.9%. In classification accuracy, logistic regression and decision tree analysis showed 73.6% and 72.6% prediction, respectively. Conclusions: Both logistic regression and decision tree analysis were adequate to explain the predictive model. It is thought that both analysis methods can be used as useful data for constructing a predictive model for hypertension.

Reinforcement Learning-Based APT Attack Response Technique Utilizing the Availability Status of Assets (방어 자산의 가용성 상태를 활용한 강화학습 기반 APT 공격 대응 기법)

  • Hyoung Rok Kim;Changhee Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1021-1031
    • /
    • 2023
  • State-sponsored cyber attacks are highly impactful because they are carried out to achieve pre-planned goals. As a defender, it is difficult to respond to them because of the large scale of the attack and the possibility that unknown vulnerabilities may be exploited. In addition, overreacting can reduce the availability of users and cause business disruption. Therefore, there is a need for a response policy that can effectively defend against attacks while ensuring user availability. To solve this problem, this paper proposes a method to collect the number of processes and sessions of defense assets in real time and use them for learning. Using this method to learn reinforcement learning-based policies on a cyber attack simulator, the attack duration based on 100 time-steps was reduced by 27.9 time-steps and 3.1 time-steps for two attacker models, respectively, and the number of "restore" actions that impede user availability during the defense process was also reduced, resulting in an overall better policy.

A Study on Energy Saving and Safety Improvement through IoT Sensor Monitoring in Smart Factory (스마트공장의 IoT 센서 모니터링을 통한 에너지절감 및 안전성 향상 연구)

  • Woohyoung Choi;Incheol Kang;Changsoo Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.117-127
    • /
    • 2024
  • Purpose: The purpose is to conduct basic research to save energy and improve the safety of manufacturing plant infrastructure by comprehensively monitoring energy management, temperature, humidity, dust and gas, air quality, and machine operation status in small and medium-sized manufacturing plants. Method: To this end, energy-related data and environmental information were collected in real time through digital power meters and IoT sensors, and research was conducted to disseminate and respond to situations for energy saving through monitoring and analysis based on the collected information. Result: We presented an application plan that takes into account energy management, cost reduction, and safety improvement, which are key indicators of ESG management activities. Conclusion: This study utilized various sensor devices and related devices in a smart factory as a practical case study in a company. Based on the information collected through research, a basic system for energy saving and safety improvement was presented.

A review of ground camera-based computer vision techniques for flood management

  • Sanghoon Jun;Hyewoon Jang;Seungjun Kim;Jong-Sub Lee;Donghwi Jung
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.425-443
    • /
    • 2024
  • Floods are among the most common natural hazards in urban areas. To mitigate the problems caused by flooding, unstructured data such as images and videos collected from closed circuit televisions (CCTVs) or unmanned aerial vehicles (UAVs) have been examined for flood management (FM). Many computer vision (CV) techniques have been widely adopted to analyze imagery data. Although some papers have reviewed recent CV approaches that utilize UAV images or remote sensing data, less effort has been devoted to studies that have focused on CCTV data. In addition, few studies have distinguished between the main research objectives of CV techniques (e.g., flood depth and flooded area) for a comprehensive understanding of the current status and trends of CV applications for each FM research topic. Thus, this paper provides a comprehensive review of the literature that proposes CV techniques for aspects of FM using ground camera (e.g., CCTV) data. Research topics are classified into four categories: flood depth, flood detection, flooded area, and surface water velocity. These application areas are subdivided into three types: urban, river and stream, and experimental. The adopted CV techniques are summarized for each research topic and application area. The primary goal of this review is to provide guidance for researchers who plan to design a CV model for specific purposes such as flood-depth estimation. Researchers should be able to draw on this review to construct an appropriate CV model for any FM purpose.

Harnessing the Power of Voice: A Deep Neural Network Model for Alzheimer's Disease Detection

  • Chan-Young Park;Minsoo Kim;YongSoo Shim;Nayoung Ryoo;Hyunjoo Choi;Ho Tae Jeong;Gihyun Yun;Hunboc Lee;Hyungryul Kim;SangYun Kim;Young Chul Youn
    • Dementia and Neurocognitive Disorders
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Background and Purpose: Voice, reflecting cerebral functions, holds potential for analyzing and understanding brain function, especially in the context of cognitive impairment (CI) and Alzheimer's disease (AD). This study used voice data to distinguish between normal cognition and CI or Alzheimer's disease dementia (ADD). Methods: This study enrolled 3 groups of subjects: 1) 52 subjects with subjective cognitive decline; 2) 110 subjects with mild CI; and 3) 59 subjects with ADD. Voice features were extracted using Mel-frequency cepstral coefficients and Chroma. Results: A deep neural network (DNN) model showed promising performance, with an accuracy of roughly 81% in 10 trials in predicting ADD, which increased to an average value of about 82.0%±1.6% when evaluated against unseen test dataset. Conclusions: Although results did not demonstrate the level of accuracy necessary for a definitive clinical tool, they provided a compelling proof-of-concept for the potential use of voice data in cognitive status assessment. DNN algorithms using voice offer a promising approach to early detection of AD. They could improve the accuracy and accessibility of diagnosis, ultimately leading to better outcomes for patients.

Artificial Intelligence-Enhanced Neurocritical Care for Traumatic Brain Injury : Past, Present and Future

  • Kyung Ah Kim;Hakseung Kim;Eun Jin Ha;Byung C. Yoon;Dong-Joo Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.5
    • /
    • pp.493-509
    • /
    • 2024
  • In neurointensive care units (NICUs), particularly in cases involving traumatic brain injury (TBI), swift and accurate decision-making is critical because of rapidly changing patient conditions and the risk of secondary brain injury. The use of artificial intelligence (AI) in NICU can enhance clinical decision support and provide valuable assistance in these complex scenarios. This article aims to provide a comprehensive review of the current status and future prospects of AI utilization in the NICU, along with the challenges that must be overcome to realize this. Presently, the primary application of AI in NICU is outcome prediction through the analysis of preadmission and high-resolution data during admission. Recent applications include augmented neuromonitoring via signal quality control and real-time event prediction. In addition, AI can integrate data gathered from various measures and support minimally invasive neuromonitoring to increase patient safety. However, despite the recent surge in AI adoption within the NICU, the majority of AI applications have been limited to simple classification tasks, thus leaving the true potential of AI largely untapped. Emerging AI technologies, such as generalist medical AI and digital twins, harbor immense potential for enhancing advanced neurocritical care through broader AI applications. If challenges such as acquiring high-quality data and ethical issues are overcome, these new AI technologies can be clinically utilized in the actual NICU environment. Emphasizing the need for continuous research and development to maximize the potential of AI in the NICU, we anticipate that this will further enhance the efficiency and accuracy of TBI treatment within the NICU.

TBM mechanical characteristics for NFGM in mechanized tunnelling

  • Pill-Bae Hwang;Beom-Ju kim;Seok-Won Lee
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.477-486
    • /
    • 2024
  • The process of inspecting and replacing cutting tools in a shield tunnel boring machine (TBM) is called cutterhead intervention (CHI) (Farrokh and Kim 2018). Since CHI is performed by a worker who enters the chamber in TBM, the worker is directly exposed to high water pressure and huge water inflow, especially in areas with high ground water levels, causing health problems for the worker and shortening of available working hours (Kindwall 1990). Ham et al. (2022) proposed a method of reducing the water pressure and water inflow by injecting a grout solution into the ground through the shield TBM chamber, and named it the new face grouting method (NFGM). In this study, the TBM mechanical characteristics including the injection pressure of the grout solution and the cutterhead rotation speed were determined for the best performance of the NFGM. To find the appropriate injection pressure, the water inflow volume according to the injection pressure change was measured by using a water inflow test apparatus. A model torque test apparatus was manufactured to find the appropriate cutterhead rotation speed by investigating the change in the status of the grout solution according to the rotation speed change. In addition, to prove the validity of this study, comprehensive water inflow tests were carried out. The results of the tests showed that the injection pressure equal to overburden pressure + (0.10 ~ 0.15) MPa and the cutterhead rotation speed of 0.8 to 1.0 RPM are the most appropriate. In the actual construction site, it is recommended to select an appropriate value within the proposed range while considering the economic feasibility and workability.