• Title/Summary/Keyword: Machine Security System

Search Result 410, Processing Time 0.026 seconds

A Study on Ransomware Detection Methods in Actual Cases of Public Institutions (공공기관 실제 사례로 보는 랜섬웨어 탐지 방안에 대한 연구)

  • Yong Ju Park;Huy Kang Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.499-510
    • /
    • 2023
  • Recently, an intelligent and advanced cyber attack attacks a computer network of a public institution using a file containing malicious code or leaks information, and the damage is increasing. Even in public institutions with various information protection systems, known attacks can be detected, but unknown dynamic and encryption attacks can be detected when existing signature-based or static analysis-based malware and ransomware file detection methods are used. vulnerable to The detection method proposed in this study extracts the detection result data of the system that can detect malicious code and ransomware among the information protection systems actually used by public institutions, derives various attributes by combining them, and uses a machine learning classification algorithm. Results are derived through experiments on how the derived properties are classified and which properties have a significant effect on the classification result and accuracy improvement. In the experimental results of this paper, although it is different for each algorithm when a specific attribute is included or not, the learning with a specific attribute shows an increase in accuracy, and later detects malicious code and ransomware files and abnormal behavior in the information protection system. It is expected that it can be used for property selection when creating algorithms.

False Alarm Minimization Technology using SVM in Intrusion Prevention System (SVM을 이용한 침입방지시스템 오경보 최소화 기법)

  • Kim Gill-Han;Lee Hyung-Woo
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.119-132
    • /
    • 2006
  • The network based security techniques well-known until now have week points to be passive in attacks and susceptible to roundabout attacks so that the misuse detection based intrusion prevention system which enables positive correspondence to the attacks of inline mode are used widely. But because the Misuse detection based Intrusion prevention system is proportional to the detection rules, it causes excessive false alarm and is linked to wrong correspondence which prevents the regular network flow and is insufficient to detect transformed attacks, This study suggests an Intrusion prevention system which uses Support Vector machines(hereinafter referred to as SVM) as one of rule based Intrusion prevention system and Anomaly System in order to supplement these problems, When this compared with existing intrusion prevention system, show performance result that improve about 20% and could through intrusion prevention system that propose false positive minimize and know that can detect effectively about new variant attack.

  • PDF

Smart Ship Container With M2M Technology (M2M 기술을 이용한 스마트 선박 컨테이너)

  • Sharma, Ronesh;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.278-287
    • /
    • 2013
  • Modern information technologies continue to provide industries with new and improved methods. With the rapid development of Machine to Machine (M2M) communication, a smart container supply chain management is formed based on high performance sensors, computer vision, Global Positioning System (GPS) satellites, and Globle System for Mobile (GSM) communication. Existing supply chain management has limitation to real time container tracking. This paper focuses on the studies and implementation of real time container chain management with the development of the container identification system and automatic alert system for interrupts and for normal periodical alerts. The concept and methods of smart container modeling are introduced together with the structure explained prior to the implementation of smart container tracking alert system. Firstly, the paper introduces the container code identification and recognition algorithm implemented in visual studio 2010 with Opencv (computer vision library) and Tesseract (OCR engine) for real time operation. Secondly it discusses the current automatic alert system provided for real time container tracking and the limitations of those systems. Finally the paper summarizes the challenges and the possibilities for the future work for real time container tracking solutions with the ubiquitous mobile and satellite network together with the high performance sensors and computer vision. All of those components combine to provide an excellent delivery of supply chain management with outstanding operation and security.

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

Abnormal Crowd Behavior Detection via H.264 Compression and SVDD in Video Surveillance System (H.264 압축과 SVDD를 이용한 영상 감시 시스템에서의 비정상 집단행동 탐지)

  • Oh, Seung-Geun;Lee, Jong-Uk;Chung, Yongw-Ha;Park, Dai-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.183-190
    • /
    • 2011
  • In this paper, we propose a prototype system for abnormal sound detection and identification which detects and recognizes the abnormal situations by means of analyzing audio information coming in real time from CCTV cameras under surveillance environment. The proposed system is composed of two layers: The first layer is an one-class support vector machine, i.e., support vector data description (SVDD) that performs rapid detection of abnormal situations and alerts to the manager. The second layer classifies the detected abnormal sound into predefined class such as 'gun', 'scream', 'siren', 'crash', 'bomb' via a sparse representation classifier (SRC) to cope with emergency situations. The proposed system is designed in a hierarchical manner via a mixture of SVDD and SRC, which has desired characteristics as follows: 1) By fast detecting abnormal sound using SVDD trained with only normal sound, it does not perform the unnecessary classification for normal sound. 2) It ensures a reliable system performance via a SRC that has been successfully applied in the field of face recognition. 3) With the intrinsic incremental learning capability of SRC, it can actively adapt itself to the change of a sound database. The experimental results with the qualitative analysis illustrate the efficiency of the proposed method.

Novelty Detection on Web-server Log Dataset (웹서버 로그 데이터의 이상상태 탐지 기법)

  • Lee, Hwaseong;Kim, Ki Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1311-1319
    • /
    • 2019
  • Currently, the web environment is a commonly used area for sharing information and conducting business. It is becoming an attack point for external hacking targeting on personal information leakage or system failure. Conventional signature-based detection is used in cyber threat but signature-based detection has a limitation that it is difficult to detect the pattern when it is changed like polymorphism. In particular, injection attack is known to the most critical security risks based on web vulnerabilities and various variants are possible at any time. In this paper, we propose a novelty detection technique to detect abnormal state that deviates from the normal state on web-server log dataset(WSLD). The proposed method is a machine learning-based technique to detect a minor anomalous data that tends to be different from a large number of normal data after replacing strings in web-server log dataset with vectors using machine learning-based embedding algorithm.

2-Stage Detection and Classification Network for Kiosk User Analysis (디스플레이형 자판기 사용자 분석을 위한 이중 단계 검출 및 분류 망)

  • Seo, Ji-Won;Kim, Mi-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.668-674
    • /
    • 2022
  • Machine learning techniques using visual data have high usability in fields of industry and service such as scene recognition, fault detection, security and user analysis. Among these, user analysis through the videos from CCTV is one of the practical way of using vision data. Also, many studies about lightweight artificial neural network have been published to increase high usability for mobile and embedded environment so far. In this study, we propose the network combining the object detection and classification for mobile graphic processing unit. This network detects pedestrian and face, classifies age and gender from detected face. Proposed network is constructed based on MobileNet, YOLOv2 and skip connection. Both detection and classification models are trained individually and combined as 2-stage structure. Also, attention mechanism is used to improve detection and classification ability. Nvidia Jetson Nano is used to run and evaluate the proposed system.

Intrusion Detection Technique using Distributed Mobile Agent (Distributed Mobile Agent를 이용한 침입탐지 기법)

  • Yang, Hwan Seok;Yoo, Seung Jae;Yang, Jeong Mo
    • Convergence Security Journal
    • /
    • v.12 no.6
    • /
    • pp.69-75
    • /
    • 2012
  • MANET(Mobile Ad-hoc Network) is target of many attacks because of dynamic topology and hop-by-hop data transmission method. In MANET, location setting of intrusion detection system is difficult and attack detection using information collected locally is more difficult. The amount of traffic grow, intrusion detection performance will be decreased. In this paper, MANET is composed of zone form and we used random projection technique which reduces dimension without loss of information in order to perform stable intrusion detection in even massive traffic. Global detection node is used to detect attacks which are difficult to detect using only local information. In the global detection node, attack detection is performed using received information from IDS agent and pattern of nodes. k-NN and ZBIDS were experimented to evaluate performance of the proposed technique in this paper. The superiority of performance was confirmed through the experience.

Analysis & defence of detection technology in network Attacker (네트워크 침입자탐지기법 분석과 대응)

  • Yun, Dong Sic
    • Convergence Security Journal
    • /
    • v.13 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • Connection hijacking attack using the vulnerability of the TCP protocol to redirect TCP stream goes through your machine actively (Active Attack). The SKEY such as one-time password protection mechanisms that are provided by a ticket-based authentication system such as Kerberos or redirection, the attacker can bypass.Someone TCP connection if you have access on TCP packet sniffer or packet generator is very vulnerable. Sniffer to defend against attacks such as one-time passwords and token-based authentication and user identification scheme has been used. Active protection, but these methods does not sign or encrypt the data stream from sniffing passwords over insecure networks, they are still vulnerable from attacks. For many people, an active attack is very difficult and so I think the threat is low, but here to help break the illusion successful intrusion on the UNIX host, a very aggressive attack is presented. The tools available on the Internet that attempt to exploit this vulnerability, known as the recent theoretical measures is required. In this paper, we propose analysis techniques on a wireless network intruder detection.

A New Method to Detect Anomalous State of Network using Information of Clusters (클러스터 정보를 이용한 네트워크 이상상태 탐지방법)

  • Lee, Ho-Sub;Park, Eung-Ki;Seo, Jung-Taek
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.3
    • /
    • pp.545-552
    • /
    • 2012
  • The rapid development of information technology is making large changes in our lives today. Also the infrastructure and services are combinding with information technology which predicts another huge change in our environment. However, the development of information technology brings various types of side effects and these side effects not only cause financial loss but also can develop into a nationwide crisis. Therefore, the detection and quick reaction towards these side effects is critical and much research is being done. Intrusion detection systems can be an example of such research. However, intrusion detection systems mostly tend to focus on judging whether particular traffic or files are malicious or not. Also it is difficult for intrusion detection systems to detect newly developed malicious codes. Therefore, this paper proposes a method which determines whether the present network model is normal or abnormal by comparing it with past network situations.