• 제목/요약/키워드: Machine Learning Applications

검색결과 537건 처리시간 0.127초

Comparison of Machine Learning Tools for Mobile Application

  • Lee, Yo-Seob
    • International Journal of Advanced Culture Technology
    • /
    • 제10권3호
    • /
    • pp.360-370
    • /
    • 2022
  • Demand for machine learning systems continues to grow, and cloud machine learning platforms are widely used to meet this demand. Recently, the performance improvement of the application processor of smartphones has become an opportunity for the machine learning platform to move from the cloud to On-Device AI, and mobile applications equipped with machine learning functions are required. In this paper, machine learning tools for mobile applications are investigated and compared the characteristics of these tools.

ACCELERATION OF MACHINE LEARNING ALGORITHMS BY TCHEBYCHEV ITERATION TECHNIQUE

  • LEVIN, MIKHAIL P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권1호
    • /
    • pp.15-28
    • /
    • 2018
  • Recently Machine Learning algorithms are widely used to process Big Data in various applications and a lot of these applications are executed in run time. Therefore the speed of Machine Learning algorithms is a critical issue in these applications. However the most of modern iteration Machine Learning algorithms use a successive iteration technique well-known in Numerical Linear Algebra. But this technique has a very low convergence, needs a lot of iterations to get solution of considering problems and therefore a lot of time for processing even on modern multi-core computers and clusters. Tchebychev iteration technique is well-known in Numerical Linear Algebra as an attractive candidate to decrease the number of iterations in Machine Learning iteration algorithms and also to decrease the running time of these algorithms those is very important especially in run time applications. In this paper we consider the usage of Tchebychev iterations for acceleration of well-known K-Means and SVM (Support Vector Machine) clustering algorithms in Machine Leaning. Some examples of usage of our approach on modern multi-core computers under Apache Spark framework will be considered and discussed.

기계학습 활용을 위한 학습 데이터세트 구축 표준화 방안에 관한 연구 (A study on the standardization strategy for building of learning data set for machine learning applications)

  • 최정열
    • 디지털융복합연구
    • /
    • 제16권10호
    • /
    • pp.205-212
    • /
    • 2018
  • 고성능 CPU/GPU의 개발과 심층신경망 등의 인공지능 알고리즘, 그리고 다량의 데이터 확보를 통해 기계학습이 다양한 응용 분야로 확대 적용되고 있다. 특히, 사물인터넷, 사회관계망서비스, 웹페이지, 공공데이터로부터 수집된 다량의 데이터들이 기계학습의 활용에 가속화를 가하고 있다. 기계학습을 위한 학습 데이터세트는 응용 분야와 데이터 종류에 따라 다양한 형식으로 존재하고 있어 효과적으로 데이터를 처리하고 기계학습에 적용하기에 어려움이 따른다. 이에 본 논문은 표준화된 절차에 따라 기계학습을 위한 학습 데이터세트를 구축하기 위한 방안을 연구하였다. 먼저 학습 데이터세트가 갖추어야할 요구사항을 문제 유형과 데이터 유형별로 분석하였다. 이를 토대로 기계학습 활용을 위한 학습 데이터세트 구축에 관한 참조모델을 제안하였다. 또한 학습 데이터세트 구축 참조모델을 국제 표준으로 개발하기 위해 대상 표준화 기구의 선정 및 표준화 전략을 제시하였다.

Deep Structured Learning: Architectures and Applications

  • Lee, Soowook
    • International Journal of Advanced Culture Technology
    • /
    • 제6권4호
    • /
    • pp.262-265
    • /
    • 2018
  • Deep learning, a sub-field of machine learning changing the prospects of artificial intelligence (AI) because of its recent advancements and application in various field. Deep learning deals with algorithms inspired by the structure and function of the brain called artificial neural networks. This works reviews basic architecture and recent advancement of deep structured learning. It also describes contemporary applications of deep structured learning and its advantages over the treditional learning in artificial interlligence. This study is useful for the general readers and students who are in the early stage of deep learning studies.

머신러닝 애플리케이션 구현 비용 평가를 위한 확장형 기능 포인트 모델 (An Extended Function Point Model for Estimating the Implementing Cost of Machine Learning Applications )

  • 임석진
    • 문화기술의 융합
    • /
    • 제9권2호
    • /
    • pp.475-481
    • /
    • 2023
  • 머신러닝과 같은 소프트웨어가 일상생활에 매우 큰 영향력을 발휘하고 있는 상황에서, 소프트웨어의 개발비용을 평가하는 비용 모델의 중요성이 지속적으로 증가하고 있다. 비용 모델로서 LOC(Line of Code)와 M/M(Man-Month) 모델은 소프트웨어의 양적인 요소들을 측정하는 비용모델이다. 이와는 달리, FP(Function Point)는 소프트웨어의 기능적 특징들을 평가하는 비용모델로서 소프트웨어의 질적인 요소를 평가한다는 점에서 효과적이다. 그러나 FP는 머신러닝 소프트웨어의 주요한 요소들을 평가하지 않기 때문에 머신러닝 소프트웨어를 평가하는데 한계를 가진다. 본 논문은 확장형 FP(Extended Function Point, ExFP)를 제안한다. 확장형 FP는 머신러닝의 주요 특징인 하이퍼 파라미터와 그것의 최적화에 대한 복잡도를 반영하여 소프트웨어의 기능적 요소를 평가하도록 확장하였기 때문에 머신러닝과 같은 최신 소프트웨어에의 비용 평가에 적합하다. 머신러닝 소프트웨어의 특징을 반영한 평가를 통해 제안된 확장형 FP의 효용성을 보였다.

Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications

  • Yang, Haesang;Byun, Sung-Hoon;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • 한국해양공학회지
    • /
    • 제34권4호
    • /
    • pp.277-284
    • /
    • 2020
  • Underwater acoustics, which is the study of phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. The main objective of underwater acoustic remote sensing is to obtain information on a target object indirectly by using acoustic data. Presently, various types of machine learning techniques are being widely used to extract information from acoustic data. The machine learning techniques typically used in underwater acoustics and their applications in passive SONAR systems were reviewed in the first two parts of this work (Yang et al., 2020a; Yang et al., 2020b). As a follow-up, this paper reviews machine learning applications in SONAR signal processing with a focus on active target detection and classification.

Underwater Acoustic Research Trends with Machine Learning: Ocean Parameter Inversion Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • 한국해양공학회지
    • /
    • 제34권5호
    • /
    • pp.371-376
    • /
    • 2020
  • Underwater acoustics, which is the study of the phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. Underwater acoustics is mainly applied in the field of remote sensing, wherein information on a target object is acquired indirectly from acoustic data. Presently, machine learning, which has recently been applied successfully in a variety of research fields, is being utilized extensively in remote sensing to obtain and extract information. In the earlier parts of this work, we examined the research trends involving the machine learning techniques and theories that are mainly used in underwater acoustics, as well as their applications in active/passive SONAR systems (Yang et al., 2020a; Yang et al., 2020b; Yang et al., 2020c). As a follow-up, this paper reviews machine learning applications for the inversion of ocean parameters such as sound speed profiles and sediment geoacoustic parameters.

Adversarial Machine Learning: A Survey on the Influence Axis

  • Alzahrani, Shahad;Almalki, Taghreed;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.193-203
    • /
    • 2022
  • After the everyday use of systems and applications of artificial intelligence in our world. Consequently, machine learning technologies have become characterized by exceptional capabilities and unique and distinguished performance in many areas. However, these applications and systems are vulnerable to adversaries who can be a reason to confer the wrong classification by introducing distorted samples. Precisely, it has been perceived that adversarial examples designed throughout the training and test phases can include industrious Ruin the performance of the machine learning. This paper provides a comprehensive review of the recent research on adversarial machine learning. It's also worth noting that the paper only examines recent techniques that were released between 2018 and 2021. The diverse systems models have been investigated and discussed regarding the type of attacks, and some possible security suggestions for these attacks to highlight the risks of adversarial machine learning.

Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • 한국해양공학회지
    • /
    • 제34권3호
    • /
    • pp.227-236
    • /
    • 2020
  • Underwater acoustics, which is the domain that addresses phenomena related to the generation, propagation, and reception of sound waves in water, has been applied mainly in the research on the use of sound navigation and ranging (SONAR) systems for underwater communication, target detection, investigation of marine resources and environment mapping, and measurement and analysis of sound sources in water. The main objective of remote sensing based on underwater acoustics is to indirectly acquire information on underwater targets of interest using acoustic data. Meanwhile, highly advanced data-driven machine-learning techniques are being used in various ways in the processes of acquiring information from acoustic data. The related theoretical background is introduced in the first part of this paper (Yang et al., 2020). This paper reviews machine-learning applications in passive SONAR signal-processing tasks including target detection/identification and localization.

Improving Malicious Web Code Classification with Sequence by Machine Learning

  • Paik, Incheon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권5호
    • /
    • pp.319-324
    • /
    • 2014
  • Web applications make life more convenient. Many web applications have several kinds of user input (e.g. personal information, a user's comment of commercial goods, etc.) for the activities. On the other hand, there are a range of vulnerabilities in the input functions of Web applications. Malicious actions can be attempted using the free accessibility of many web applications. Attacks by the exploitation of these input vulnerabilities can be achieved by injecting malicious web code; it enables one to perform a variety of illegal actions, such as SQL Injection Attacks (SQLIAs) and Cross Site Scripting (XSS). These actions come down to theft, replacing personal information, or phishing. The existing solutions use a parser for the code, are limited to fixed and very small patterns, and are difficult to adapt to variations. A machine learning method can give leverage to cover a far broader range of malicious web code and is easy to adapt to variations and changes. Therefore, this paper suggests the adaptable classification of malicious web code by machine learning approaches for detecting the exploitation user inputs. The approach usually identifies the "looks-like malicious" code for real malicious code. More detailed classification using sequence information is also introduced. The precision for the "looks-like malicious code" is 99% and for the precise classification with sequence is 90%.