• Title/Summary/Keyword: Machine Learning Algorithm

Search Result 1,493, Processing Time 0.027 seconds

An Empirical Study on Improving the Accuracy of Demand Forecasting Based on Multi-Machine Learning (다중 머신러닝 기법을 활용한 무기체계 수리부속 수요예측 정확도 개선에 관한 실증연구)

  • Myunghwa Kim;Yeonjun Lee;Sangwoo Park;Kunwoo Kim;Taehee Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.406-415
    • /
    • 2024
  • As the equipment of the military has become more advanced and expensive, the cost of securing spare parts is also constantly increasing along with the increase in equipment assets. In particular, forecasting demand for spare parts one of the important management tasks in the military, and the accuracy of these predictions is directly related to military operations and cost management. However, because the demand for spare parts is intermittent and irregular, it is often difficult to make accurate predictions using traditional statistical methods or a single statistical or machine learning model. In this paper, we propose a model that can increase the accuracy of demand forecasting for irregular patterns of spare parts demanding by using a combination of statistical and machine learning algorithm, and through experiments on Cheonma spare parts demanding data.

RFA: Recursive Feature Addition Algorithm for Machine Learning-Based Malware Classification

  • Byeon, Ji-Yun;Kim, Dae-Ho;Kim, Hee-Chul;Choi, Sang-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.61-68
    • /
    • 2021
  • Recently, various technologies that use machine learning to classify malicious code have been studied. In order to enhance the effectiveness of machine learning, it is most important to extract properties to identify malicious codes and normal binaries. In this paper, we propose a feature extraction method for use in machine learning using recursive methods. The proposed method selects the final feature using recursive methods for individual features to maximize the performance of machine learning. In detail, we use the method of extracting the best performing features among individual feature at each stage, and then combining the extracted features. We extract features with the proposed method and apply them to machine learning algorithms such as Decision Tree, SVM, Random Forest, and KNN, to validate that machine learning performance improves as the steps continue.

A Study on the Learning Method of Documents for Implementation of Automated Documents Classificator (문서 자동 분류기의 구현을 위한 문서 학습 방법에 관한 연구)

  • 선복근;이인정;한광록
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1001-1004
    • /
    • 1999
  • We study on machine learning method for automatic document categorization using back propagation algorithm. Four categories are classified for the experiment and the system learns with 20 documents per a category by this method. As a result of the machine learning, we can find that a new document is automatically classified with a category according to the predefined ones.

  • PDF

Development of a System for Predicting Photovoltaic Power Generation and Detecting Defects Using Machine Learning (기계학습을 이용한 태양광 발전량 예측 및 결함 검출 시스템 개발)

  • Lee, Seungmin;Lee, Woo Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.353-360
    • /
    • 2016
  • Recently, solar photovoltaic(PV) power generation which generates electrical power from solar panels composed of multiple solar cells, showed the most prominent growth in the renewable energy sector worldwide. However, in spite of increased demand and need for a photovoltaic power generation, it is difficult to early detect defects of solar panels and equipments due to wide and irregular distribution of power generation. In this paper, we choose an optimal machine learning algorithm for estimating the generation amount of solar power by considering several panel information and climate information and develop a defect detection system by using the chosen algorithm generation. Also we apply the algorithm to a domestic solar photovoltaic power plant as a case study.

An Improved Sample Balanced Genetic Algorithm and Extreme Learning Machine for Accurate Alzheimer Disease Diagnosis

  • Sachnev, Vasily;Suresh, Sundaram
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.118-127
    • /
    • 2016
  • An improved sample balanced genetic algorithm and Extreme Learning Machine (iSBGA-ELM) was designed for accurate diagnosis of Alzheimer disease (AD) and identification of biomarkers associated with AD in this paper. The proposed AD diagnosis approach uses a set of magnetic resonance imaging scans in Open Access Series of Imaging Studies (OASIS) public database to build an efficient AD classifier. The approach contains two steps: "voxels selection" based on an iSBGA and "AD classification" based on the ELM. In the first step, the proposed iSBGA searches for a robust subset of voxels with promising properties for further AD diagnosis. The robust subset of voxels chosen by iSBGA is then used to build an AD classifier based on the ELM. A robust subset of voxels keeps a high generalization performance of AD classification in various scenarios and highlights the importance of the chosen voxels for AD research. The AD classifier with maximum classification accuracy is created using an optimal subset of robust voxels. It represents the final AD diagnosis approach. Experiments with the proposed iSBGA-ELM using OASIS data set showed an average testing accuracy of 87%. Experiments clearly indicated the proposed iSBGA-ELM was efficient for AD diagnosis. It showed improvements over existing techniques.

Design of comprehensive mechanical properties by machine learning and high-throughput optimization algorithm in RAFM steels

  • Wang, Chenchong;Shen, Chunguang;Huo, Xiaojie;Zhang, Chi;Xu, Wei
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1008-1012
    • /
    • 2020
  • In order to make reasonable design for the improvement of comprehensive mechanical properties of RAFM steels, the design system with both machine learning and high-throughput optimization algorithm was established. As the basis of the design system, a dataset of RAFM steels was compiled from previous literatures. Then, feature engineering guided random forests regressors were trained by the dataset and NSGA II algorithm were used for the selection of the optimal solutions from the large-scale solution set with nine composition features and two treatment processing features. The selected optimal solutions by this design system showed prospective mechanical properties, which was also consistent with the physical metallurgy theory. This efficiency design mode could give the enlightenment for the design of other metal structural materials with the requirement of multi-properties.

Detection of Moving Direction using PIR Sensors and Deep Learning Algorithm

  • Woo, Jiyoung;Yun, Jaeseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.11-17
    • /
    • 2019
  • In this paper, we propose a method to recognize the moving direction in the indoor environment by using the sensing system equipped with passive infrared (PIR) sensors and a deep learning algorithm. A PIR sensor generates a signal that can be distinguished according to the direction of movement of the user. A sensing system with four PIR sensors deployed by $45^{\circ}$ increments is developed and installed in the ceiling of the room. The PIR sensor signals from 6 users with 10-time experiments for 8 directions were collected. We extracted the raw data sets and performed experiments varying the number of sensors fed into the deep learning algorithm. The proposed sensing system using deep learning algorithm can recognize the users' moving direction by 99.2 %. In addition, with only one PIR senor, the recognition accuracy reaches 98.4%.

An Early Warning Model for Student Status Based on Genetic Algorithm-Optimized Radial Basis Kernel Support Vector Machine

  • Hui Li;Qixuan Huang;Chao Wang
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.263-272
    • /
    • 2024
  • A model based on genetic algorithm optimization, GA-SVM, is proposed to warn university students of their status. This model improves the predictive effect of support vector machines. The genetic optimization algorithm is used to train the hyperparameters and adjust the kernel parameters, kernel penalty factor C, and gamma to optimize the support vector machine model, which can rapidly achieve convergence to obtain the optimal solution. The experimental model was trained on open-source datasets and validated through comparisons with random forest, backpropagation neural network, and GA-SVM models. The test results show that the genetic algorithm-optimized radial basis kernel support vector machine model GA-SVM can obtain higher accuracy rates when used for early warning in university learning.

Classifying Windows Executables using API-based Information and Machine Learning (API 정보와 기계학습을 통한 윈도우 실행파일 분류)

  • Cho, DaeHee;Lim, Kyeonghwan;Cho, Seong-je;Han, Sangchul;Hwang, Young-sup
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1325-1333
    • /
    • 2016
  • Software classification has several applications such as copyright infringement detection, malware classification, and software automatic categorization in software repositories. It can be also employed by software filtering systems to prevent the transmission of illegal software. If illegal software is identified by measuring software similarity in software filtering systems, the average number of comparisons can be reduced by shrinking the search space. In this study, we focused on the classification of Windows executables using API call information and machine learning. We evaluated the classification performance of machine learning-based classifier according to the refinement method for API information and machine learning algorithm. The results showed that the classification success rate of SVM (Support Vector Machine) with PolyKernel was higher than other algorithms. Since the API call information can be extracted from binary executables and machine learning-based classifier can identify tampered executables, API call information and machine learning-based software classifiers are suitable for software filtering systems.

Dropout Genetic Algorithm Analysis for Deep Learning Generalization Error Minimization

  • Park, Jae-Gyun;Choi, Eun-Soo;Kang, Min-Soo;Jung, Yong-Gyu
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.2
    • /
    • pp.74-81
    • /
    • 2017
  • Recently, there are many companies that use systems based on artificial intelligence. The accuracy of artificial intelligence depends on the amount of learning data and the appropriate algorithm. However, it is not easy to obtain learning data with a large number of entity. Less data set have large generalization errors due to overfitting. In order to minimize this generalization error, this study proposed DGA(Dropout Genetic Algorithm) which can expect relatively high accuracy even though data with a less data set is applied to machine learning based genetic algorithm to deep learning based dropout. The idea of this paper is to determine the active state of the nodes. Using Gradient about loss function, A new fitness function is defined. Proposed Algorithm DGA is supplementing stochastic inconsistency about Dropout. Also DGA solved problem by the complexity of the fitness function and expression range of the model about Genetic Algorithm As a result of experiments using MNIST data proposed algorithm accuracy is 75.3%. Using only Dropout algorithm accuracy is 41.4%. It is shown that DGA is better than using only dropout.