Browse > Article
http://dx.doi.org/10.1016/j.net.2019.10.014

Design of comprehensive mechanical properties by machine learning and high-throughput optimization algorithm in RAFM steels  

Wang, Chenchong (State Key Laboratory of Rolling and Automation, School of Materials Science and Engineering, Northeastern University)
Shen, Chunguang (State Key Laboratory of Rolling and Automation, School of Materials Science and Engineering, Northeastern University)
Huo, Xiaojie (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University)
Zhang, Chi (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University)
Xu, Wei (State Key Laboratory of Rolling and Automation, School of Materials Science and Engineering, Northeastern University)
Publication Information
Nuclear Engineering and Technology / v.52, no.5, 2020 , pp. 1008-1012 More about this Journal
Abstract
In order to make reasonable design for the improvement of comprehensive mechanical properties of RAFM steels, the design system with both machine learning and high-throughput optimization algorithm was established. As the basis of the design system, a dataset of RAFM steels was compiled from previous literatures. Then, feature engineering guided random forests regressors were trained by the dataset and NSGA II algorithm were used for the selection of the optimal solutions from the large-scale solution set with nine composition features and two treatment processing features. The selected optimal solutions by this design system showed prospective mechanical properties, which was also consistent with the physical metallurgy theory. This efficiency design mode could give the enlightenment for the design of other metal structural materials with the requirement of multi-properties.
Keywords
Machine learning; High-throughput optimization; Mechanical property; RAFM steel;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 M.G. Park, C.H. Lee, J. Moon, J.Y. Park, T.H. Lee, N. Kang, H.C. Kim, Effect of microstructural evolution by isothermal aging on the mechanical properties of 9Cr-1WVTa reduced activation ferritic/martensitic steels, J. Nucl. Mater. 485 (2017) 15-22.
2 A. Puype, L. Malerba, N. De Wispelaere, R. Petrov, J. Sietsma, Effect of W and N on mechanical properties of reduced activation ferritic/martensitic EUROFERbased steel grades, J. Nucl. Mater. 502 (2018) 282-288.
3 L. Tan, L.L. Snead, Y. Katoh, Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors, J. Nucl. Mater. 478 (2016) 42-49.   DOI
4 J. Vanaja, K. Laha, M. Nandagopal, S. Sam, M.D. Mathew, T. Jayakumar, E. Rajendra Kumar, Effect of tungsten on tensile properties and flow behaviour of RAFM steel, J. Nucl. Mater. 433 (2013) 412-418.   DOI
5 P. Wang, J. Chen, H. Fu, S. Liu, X. Li, Z. Xu, Effect of N on the precipitation behaviours of the reduced activation ferritic/martensitic steel CLF-1 after thermal ageing, J. Nucl. Mater. 442 (2013) S9-S12.   DOI
6 H. Han, R. Yu, B. Li, Y. Zhang, Multi-objective optimization of corrugated tube inserted with multi-channel twisted tape using RSM and NSGA-II, Appl. Therm. Eng. 159 (2019).
7 M.S. Mohammed, R.A. Vural, NSGA-II plus FEM based loss optimization of three-phase transformer, IEEE Trans. Ind. Electron. 66 (2019) 7417-7425.   DOI
8 S. Peng, T. Li, J. Zhao, S. Lv, G.Z. Tan, M. Dong, H. Zhang, Towards energy and material efficient laser cladding process: modeling and optimization using a hybrid TS-GEP algorithm and the NSGA-II, J. Clean. Prod. 227 (2019) 58-69.
9 S. Datta, F. Pettersson, S. Ganguly, H. Saxen, N. Chakraborti, Designing High strength multi-phase steel for improved strengtheductility balance using neural networks and multi-objective genetic algorithms, ISIJ Int. 47 (2007) 1195-1203.   DOI
10 S. Datta, F. Pettersson, S. Ganguly, H. Saxen, N. Chakraborti, Identification of factors governing mechanical properties of TRIP-aided steel using genetic algorithms and neural networks, Mater. Manuf. Process. 23 (2008) 130-137.   DOI
11 S. Ganguly, S. Datta, N. Chakraborti, Genetic algorithms in optimization of strength and ductility of low-carbon steels, Mater. Manuf. Process. 22 (2007) 650-658.   DOI
12 S. Ganguly, S. Datta, N. Chakraborti, Genetic algorithm-based search on the role of variables in the work hardening process of multiphase steels, Comput. Mater. Sci. 45 (2009) 158-166.   DOI
13 C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Analysis of fracture toughness in high CoeNi secondary hardening steel using FEM, Mater. Sci. Eng. A 646 (2015) 1-7.   DOI
14 A. Bernieri, G. Betta, L. Ferrigno, M. Laracca, S. Mastrostefano, Multifrequency excitation and support vector machine regressor for ECT defect characterization, IEEE Trans. Instrum. Meas. 63 (2014) 1272-1280.   DOI
15 S.N. Zhu, C. Zhang, Z.G. Yang, C.C. Wang, Hydrogen's influence on reduced activation ferritic/martensitic steels' elastic properties: density functional theory combined with experiment, Nucl. Eng. Technol. 49 (2017) 1748-1751.   DOI
16 B. Sen, S.A.I. Hussain, M. Mia, U.K. Mandal, S.P. Mondal, Selection of an ideal MQL-assisted milling condition: an NSGA-II-coupled TOPSIS approach for improving machinability of Inconel 690, Int. J. Adv. Manuf. Technol. 103 (2019) 1811-829.   DOI
17 C. Wang, C. Zhang, J. Zhao, Z. Yang, W. Liu, Microstructure evolution and yield strength of CLAM steel in low irradiation condition, Mater. Sci. Eng. A 682 (2017) 563-568.
18 W. Wang, S. Liu, G. Xu, B. Zhang, Q. Huang, Effect of thermal aging on microstructure and mechanical properties of China low-activation martensitic steel at 550 degrees C, Nucl. Eng. Technol. 48 (2016) 518-524.   DOI
19 D. Shin, Y. Yamamoto, M.P. Brady, S. Lee, J.A. Haynes, Modern data analytics approach to predict creep of high-temperature alloys, Acta Mater. 168 (2019) 321-330.   DOI
20 A. Panda, R. Naskar, S. Pal, Deep learning approach for segmentation of plain carbon steel microstructure images, IET Image Process. 13 (2019) 1516-1524.
21 Z. Xiong, Y.X. Cui, Z.H. Liu, Y. Zhao, M. Hu, J.J. Hu, Evaluating explorative prediction power of machine learning algorithms for materials discovery using -fold forward cross-validation, Comput. Mater. Sci. 171 (2020), 109203.
22 Z. Han, Y. Liu, J. Zhao, W. Wang, Real time prediction for converter gas tank levels based on multi-output least square support vector regressor, Contr. Eng. Pract. 20 (2012) 1400-1409.   DOI
23 R. Kemp, G.A. Cottrell, H.K.D.H. Bhadeshia, G.R. Odette, T. Yamamoto, H. Kishimoto, Neural-network analysis of irradiation hardening in lowactivation steels, J. Nucl. Mater. 348 (2006) 311-328.   DOI
24 R.L. Klueh, J.J. Kai, D.J. Alexander, Microstructure mechanical-properties correlation of irradiated conventional and reduced-activation martensitic steels, J. Nucl. Mater. 225 (1995) 175-186.   DOI
25 S. Chen, L. Rong, Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel, J. Nucl. Mater. 459 (2015) 13-19.
26 P. Fernandez, A.M. Lancha, J. Lapena, M. Hernandez-Mayoral, Metallurgical characterization of the reduced activation ferritic/martensitic steel Eurofer'97 on as-received condition, Fusion Eng. Des. 58-59 (2001) 787-792.   DOI
27 R.L. Klueh, D.J. Alexander, M.A. Sokolov, Effect of chromium, tungsten, tantalum, and boron on mechanical properties of 5-9Cr-WVTaB steels, J. Nucl. Mater. 304 (2002) 139-152.   DOI
28 C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Microstructure analysis and yield strength simulation in high CoeNi secondary hardening steel, Mater. Sci. Eng. A 669 (2016) 312-317.
29 G.B. Olson, Genomic materials design: the ferrous frontier, Acta Mater. 61 (2013) 771-781.   DOI
30 C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Multi-scale simulation of hydrogen influenced critical stress intensity in high CoeNi secondary hardening steel, Mater. Des. 87 (2015) 501-506.   DOI
31 M.M. Jin, P.H. Cao, M.P. Short, Predicting the onset of void swelling in irradiated metals with machine learning, J. Nucl. Mater. 523 (2019) 189-197.
32 F.Y. Lu, Z.Q. Yin, C. Wang, C.H. Cui, J. Teng, S. Wang, W. Chen, W. Huang, B.J. Xu, G.C. Guo, Z.F. Han, Parameter optimization and real-time calibration of a measurement-device-independent quantum key distribution network based on a back propagation artificial neural network, J. Opt. Soc. Am. B 36 (2019) B92-B98.   DOI
33 J. Ding, Z. Bar-Joseph, MethRaFo: MeDIP-seq methylation estimate using a random forest regressor, Bioinformatics 33 (2017) 3477-3479.   DOI
34 S.F. Long, M. Zhao, X.F. He, Yield stress prediction model of RAFM steel based on the improved GDM-SA-SVR algorithm, Comput. Mater. Continua (CMC) 58 (2019) 727-760.
35 Q. Lu, S. van der Zwaag, W. Xu, High-throughput design of low-activation, high-strength creep-resistant steels for nuclear-reactor applications, J. Nucl. Mater. 469 (2016) 217-222.   DOI
36 R. Ma, Y. Yang, Q. Yan, Y. Yang, X. Li, C. Ge, Effect of alloying on the properties of 9Cr low activation martensitic steels, Acta Metall. Sin. 23 (2010) 451-460.
37 C. Wang, C. Zhang, Z. Yang, J. Zhao, Multiscale simulation of yield strength in reduced-activation ferritic/martensitic steel, Nucl. Eng. Technol. 49 (2017) 569-575.   DOI
38 J.S. Wang, M.D. Mulholland, G.B. Olson, D.N. Seidman, Prediction of the yield strength of a secondary-hardening steel, Acta Mater. 61 (2013) 4939-4952.   DOI
39 C.H. Lee, J.Y. Park, W.K. Seol, J. Moon, T.H. Lee, N.H. Kang, H.C. Kim, Microstructure and tensile and charpy impact properties of reduced activation ferriticemartensitic steel with Ti, Fusion Eng. Des. 124 (2017) 953-957.   DOI