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a b s t r a c t

In order to make reasonable design for the improvement of comprehensive mechanical properties of
RAFM steels, the design systemwith both machine learning and high-throughput optimization algorithm
was established. As the basis of the design system, a dataset of RAFM steels was compiled from previous
literatures. Then, feature engineering guided random forests regressors were trained by the dataset and
NSGA II algorithm were used for the selection of the optimal solutions from the large-scale solution set
with nine composition features and two treatment processing features. The selected optimal solutions by
this design system showed prospective mechanical properties, which was also consistent with the
physical metallurgy theory. This efficiency design mode could give the enlightenment for the design of
other metal structural materials with the requirement of multi-properties.
© 2019 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since materials genome initiative (MGI) was put forward with
the intent ‘to discover, manufacture, and deploy advanced mate-
rials twice as fast, at a fraction of the cost’, the materials design by
integrated computing became one of the hot topics in the field of
special steels [1e3]. In order to partially avoid large amount of
orthogonal experiments, various computing strategies, as multi-
scale models based on physical metallurgy principles [4,5], ma-
chine learning (ML) methods [6,7], optimization algorithms [8,9],
etc., were used to guide the modification of the composition or
treatment process of steels.

As one of the most well-known examples, G.B. Olson's group
from northwestern university developed two forms of steel (Fer-
rium S53 and Ferrium M54), which were licensed to QuesTek
Innovation, LLC. Ferrium S53 was used in landing gears for the U.S.
air force and Ferrium M54 was used on the safety-critical hook
shank component [1,10]. During the development of Ferrium S53
and FerriumM54, multi-scale models based on physical metallurgy
principles were used and successfully guided the improvement of
the comprehensive mechanical properties, as the strength, fracture
hang), xuwei@ral.neu.edu.cn

by Elsevier Korea LLC. This is an
toughness and hydrogen embrittlement resistance ability. How-
ever, the accuracy of physical metallurgy models critically depen-
ded on the clear physical mechanism and accurate thermodynamic
database, which limited their scope of application. Therefore, in
order to avoid the limitation of physical mechanism, several recent
researches focused on the ML algorithm. Various different ML
models, as support vector machine (SVM) [11,12], artificial neural
network (ANN) [13,14], random forests regressors (RFR) [15], etc.
were used for the prediction of various properties. Recently, S.F.
Long et al. [16] established a ML model for the prediction of tensile
properties by GDM-SA-SVR algorithm for RAFM steels. This model
could provide a relatively accurate prediction of RAFM steels' yield
strength with the effect of both irradiation and high temperature.
Also, for the irradiation swelling, M.M. Jin et al. [17] made a sys-
tematically discussion about the prediction of void swelling in
different steels by ML algorithm. In their research, different ML
algorithms were compared to analyze the optimal strategy for the
prediction. However, most researches based onML algorithm in the
field of steels design only focused on one objective without the
comprehensive consideration of different properties. Also, with the
limitation of data amount for different steels, the improvement of
generalization ability was a common problem in most researches
based on ML algorithms. For the design of reduced activation
ferritic/martensitic (RAFM) steels, Lu et al. [18] used CALPHAD
theory combined with optimization algorithm to design both the
solidification and dispersion strengthening. And the designed
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Table 1
Value of the inputs and outputs from the dataset of RAFM steels.

Features' name Value of the features Standard deviation

Max Min Mean

Inputs C (wt.%) 0.13 0.03 0.10 0.02
Cr (wt.%) 9.30 4.61 7.71 1.74
W (wt.%) 3.01 0.00 1.84 0.70
Si (wt.%) 0.77 0.00 0.16 0.11
V (wt.%) 0.30 0.05 0.23 0.04
Ta (wt.%) 0.55 0.00 0.08 0.08
Ti (wt.%) 0.15 0.00 0.01 0.04
N (wt.%) 0.43 0.00 0.02 0.06
B (wt.%) 0.01 0.00 0.001 0.003
Temp (�C) 780.00 650.00 737.87 27.88
Time (min) 120.00 30.00 74.00 29.23
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results were used to guide the improvement of creep of RAFM
steels. However, the design by Lu was also focused on only one
objective (creep) without considering the comprehensive design of
multi-property.

In summary, most previous researches used physical metallurgy
models were limited by the controversial physical mechanism. And
most design of RAFM steels was mainly focused on one special
properties. In this work, in order to overcome the complex physical
mechanism of mechanical properties, especially impact toughness,
ML models were established to predict the comprehensive me-
chanical properties of RAFM steels. Then, a high-throughput multi-
objective optimization algorithm was used to make a comprehen-
sive design of RAFM steels. This design mode could also give the
enlightenment for the design of other metal structural materials.
Outputs YS (MPa) 824.00 464.00 621.44 99.57
IT (J) 342.50 16.25 170.90 81.29
2. Simulation method

2.1. Property prediction method by ML algorithm

In order to obtain relatively accurate models for the prediction
of comprehensive mechanical properties of RAFM steels, ML was
used and models were trained by the dataset established from Refs.
[19e29] as shown in Fig. 1(a). The dataset of RAFM steels contained
60 groups of data about RAFM steels, including traditional RAFM
steels from different countries and new designed alloys by different
institutes. The information of every group of data included 11
critical input features (content of C, Cr, W, Si, V, Ta, Ti, N, B,
tempering temperature and time) and 2 outputs (YS: yield
strength; IT: impact toughness) as shown in Table 1. Then, in order
to further enhance the generalization ability of ML models, stan-
dard feature engineering process was used to obtain the seven
highest correlated features for the training of the ML models for
different properties. The RF algorithm was used to assess the
importance of the 11 features quantitatively by comparing the
variation of predicted accuracy of OOB (out of bag) samples for
selected features with/without random noise, and then “last-place
elimination” rules were used to efficiently exclude the features
which had less effect on the property prediction. Also, standard
normalization processing was used as the preprocessing method to
reduce dimensional differences between different inputs and out-
puts. Then, after the partitioning of the dataset, the RAFM dataset
was divided into a training dataset with 80% groups of data (48
groups) and a test dataset with 20% groups of data (12 groups).
Finally, feature engineering guided random forests regressors (FE-
Fig. 1. Framework of the design system: (a) ML algorithm; (b) high-throughput opti-
mization algorithm.
RFRs) were trained for the prediction of both yield strength and
impact toughness of RAFM steels.

2.2. Design method by high-throughput optimization algorithm

For the design process, the 2nd generation of non-dominated
sorting genetic algorithms (NSGA II) [30e33], which combined
traditional NSGA with elitist strategy, was used for the two objec-
tive high-throughput optimization (both yield strength and impact
toughness). The process of NSGA II was shown in Fig. 1(b). Firstly,
the first generation set with 200 solutions containing all the
correlated features was randomly created. The information storage
chain of the solutions with all the value of features was defined as
the ‘chromosomes’ of the solutions. Then the objective value (yield
strength and impact toughness) was calculated by FE-RFRs for all
the 200 solutions in the first generation set. Also, the crowding
degree for all the 200 solutions was evaluated by the Euler distance
to the closest solution. By evaluating and sorting based on the
objective value and crowding degree, the Pareto front for the 1st
generation set could be obtained. Then, a genetic operator was
utilized to produce offsprings from parent chromosomes. Based on
the calculated results of Pareto front, the genetic operators made
crossover and mutation for the information storage chain of solu-
tions in 1st generation set to create new solutions. Finally, elitist
strategy was used to select the optimal solutions to form the 2nd
generation set. By this kind of cyclic iteration, the solutions would
be efficiently optimized with the evolution of the generation.

3. Results and discussion

3.1. Prediction results

The prediction results of both yield strength and impact
toughness were shown in Fig. 2(a) and (b). For the yield strength
prediction, the squared correlation coefficient (R2) between
experimental value and predicted value was larger than 90% for
both training and test sets (92.7% for training set and 91.1% for test
set). Also, similar results of R2 were obtained for impact toughness
prediction (92.3% for training set and 85.6% for test set). It meant
that all the FE-RFRs trained in this research had relatively high
generalization ability and suitable for the prediction of traditional
mechanical properties in the field of RAFM steels. Also, Fig. 2(a)
showed that the mean absolute deviation (MAE) of the predicted
yield strength was less than 26 MPa, which was significant lower
than previous researches (MAE ¼ 50 MPa) [34], which used multi-
scale phenomenological models based on the theory of physical
metallurgy to predict the yield strength. Also, for the impact



Fig. 2. Prediction results by FE-RFRs: (a) MAE of the yield strength; (b) MAE of the impact toughness.
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toughness, which was hardly predicted by physical metallurgy
models, MAE was less than 27 J. These results indicated that FE-
RFRs could obtain better accuracy and universality than previous
multi-scale physical metallurgy models for the prediction of
comprehensive mechanical properties in the field of RAFM steels.

3.2. Design results

Fig. 3 showed the designed results with the predicted yield
strength and impact toughness of the optimal solutions found by
NSGA II. The optimal solutions were obtained from the last gener-
ation after 105 cyclic iterative calculating by NSGA II. It could be
seen that the optimal solutions formed the obvious Pareto front,
which represented the comprehensive optimization of both yield
strength and impact toughness. Also, the mechanical properties for
traditional RAFM steels (Eurofer97, CLAM and CLF), which were
reported by previous researches, were shown in Fig. 3. It was sig-
nificant that the predicted results of most optimal solutions were
relatively higher than traditional RAFM steels. The highest pre-
dicted yield strength of the optimal solutions could reach 800 MPa,
which was more than 120 MPa higher than traditional RAFM steels.
Also, at the same time, it could maintain acceptable impact
toughness (150 J), which could meet the requirement of China
fusion engineering testing reactor (CFETR) [35,36]. Table 2 showed
the designed composition and treatment parameters of five
selected optimal solutions. Most design results of the selected
optimal solutions showed relatively high yield strength (>700MPa)
and improved impact toughness (>200 J). Also, it was worth to be
Fig. 3. Comparison of the designed results and traditional RAFM steels.
mentioned that, as well-known, it was difficult to prove that the
final generation obtained by GA was the ideal optimal solution for
the whole searching area. Therefore, the ‘optimal solutions’ shown
in Table 2 was only the improved solutions obtained by 105 cyclic
iterative.

Also, Fig. 4 showed the comparison results of the composition
between the selected optimal solutions and Eurofer97 (Fe-
0.1Ce9Cre1W-0.2V-0.1Ta). In order to eliminate dimensional dif-
ferences between different elements, the percentages of the
changes for original elements (C, Cr, W, V, Ta) were used to estimate
the modification of the composition. For the original elements,
most designed solutions maintained the basic composition system
of Fe-0.1Ce9Cre2W, which was commonly used in traditional
heat-resistant steels [21]. For Eurofer97, the content ofW decreased
to 1.3 wt% in order to inhibit the formation of laves phases. How-
ever, in most designed solutions, instead of deceasing the content
of W, 0.16 wt% Si was added to inhibit the adverse effect of laves
phases. Also, Ti was used to partly replace the function of V for
precipitation strengthening, because TiC had stronger stability than
VC during the service condition with relatively high temperature
(>650 �C). In summary, based on the experience of physical met-
allurgy, it was indicated that the designed solutions had reasonable
composition and could probably obtain better mechanical proper-
ties than traditional RAFM steels and they should be worth for
experimental verification.
3.3. Expanding ability of the design system

In order to compare the optimal solutions and the original alloys
in the dataset, Spearman correlation coefficient is applied to
calculate their similarity. Fig. 5 showed the difference between the
selected optimal solutions and the original alloys in the dataset
with the highest yield strength/impact toughness. It could be seen
that the composition and treatment parameters of the selected
optimal solutions were different with the original alloys from the
dataset. Especially for the designed solution of 1# and 2#, the de-
gree of correlation between designed solution of 1#/2# and the
original alloys with the highest yield strength/impact toughness
was all less than 0.9. It indicated that this design system had
acceptable expanding ability and it could help to find innovative
alloys for the improvement of comprehensive mechanical
properties.

However, the FE-RFRs trained in this research also had its scope
of application. In the range of 0.03e0.13 wt %C, 4.61e9.30 wt % Cr,
0e3.01 wt % W, 0e0.77 wt % Si, 0.05e0.3 wt % V, 0e0.55 wt % Ta,
0e0.15 wt % Ti, tempering temperature 650e780 �C, tempering
time 30e120 min, the prediction error of the models could prob-
ably be <10% for both yield strength and impact toughness.



Table 2
Designed composition and treatment parameters for the selected optimal solutions.

No. Composition (wt. %) TT (oC) Tt (min) YS (MPa) IM (J)

C Cr W Si V Ta Ti N B

1# 0.11 8.7 2.0 0.20 0.05 0.19 0.01 0.02 0.001 688 70 791 168
2# 0.10 8.6 1.9 0.16 0.06 0.10 0.05 0.005 0.002 714 80 682 263
3# 0.11 8.7 1.9 0.16 0.13 0.11 0.02 0.02 0.001 710 69 780 182
4# 0.10 8.7 2.0 0.16 0.13 0.10 0.02 0.01 0.001 711 45 771 240
5# 0.10 8.7 1.8 0.16 0.06 0.10 0.13 0.01 0.001 662 52 745 251

Fig. 4. Comparison results of the composition between the selected optimal solutions
and Eurofer97.
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However, when beyond this range occurred, the prediction error of
the models was hard to estimate. Therefore, further improvement
should also be made for broadening the application scope of these
models. This is also one of the hot topics in the field of materials
design by ML. Also, several ideas were proposed for improving the
expanding ability of MLmodels, as adding thermodynamic features
[37], introducing physical metallurgy constraints [38], etc. The
main disadvantage of physical metallurgy model was that some
ideal assumptions used in the models were not accurately consis-
tent with the reality, which would limit the performance of the
Fig. 5. Calculation results of the correlation degree: (a) for the original alloy with the h
model. However, the introduce of physical metallurgy constraints
to ML models could help to expand the application scope and
improve the rationality and explicability of ML models. Therefore,
the combination of physical metallurgy models andMLmodels was
a bright way for the development of ML for alloy design. In addition
to combining ML model with selected physical features, some
improved model evaluation methods have been proposed for
measuring the expanding ability of ML model. In work of Xiong
et al. [39], they proposed a family of k-fold-m-step forward cross-
validation methods as a new evaluation approach for ML model
for explorative prediction, and results displayed that proposed
method can more accurately evaluate the performance of the ML
model than traditional CV approach.
4. Conclusion

A design system based onML and high-throughput optimization
algorithm was established to obtain the optimal solutions of RAFM
steels with both composition and treatment process modification
for the improvement of both yield strength and impact toughness.
For the part of ML, the trained FE-RFRs had acceptable general-
ization ability (R2>85%) and could obtain better accuracy and uni-
versality than previous multi-scale physical metallurgy models. For
the part of high-throughput optimization, five selected optimal
solutions were finally obtained by NSGA II algorithm. Most selected
optimal solutions showed relatively high yield strength (>700MPa)
and improved impact toughness (>200 J) and should be worth for
experimental verification. This design mode could help to obtain
innovative RAFM steels with improved comprehensive mechanical
properties and give the enlightenment for the design of other metal
structural materials.
ighest yield strength; (b) for the original alloy with the highest impact toughness.
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