• 제목/요약/키워드: Machine Learning #2

검색결과 1,718건 처리시간 0.03초

머신러닝 기반의 자동화된 소스 싱크 분류 및 하이브리드 분석을 통한 개인정보 유출 탐지 방법 (Machine Learning Based Automated Source, Sink Categorization for Hybrid Approach of Privacy Leak Detection)

  • 심현석;정수환
    • 정보보호학회논문지
    • /
    • 제30권4호
    • /
    • pp.657-667
    • /
    • 2020
  • 안드로이드 프레임워크는 단 한번의 권한 허용을 통해 앱이 사용자의 정보를 자유롭게 이용할 수 있으며, 유출되는 데이터가 개인정보임을 식별하기 어렵다는 문제가 있다. 따라서 본 논문에서는 어플리케이션을 통해 유출되는 데이터를 분석하여, 해당 데이터가 실제로 개인정보에 해당하는 것인지를 파악하는 기준을 제시한다. 이를 위해 우리는 제어 흐름 그래프를 기반으로 소스와 싱크를 추출하며, 소스에서 싱크까지의 흐름이 존재하는 경우 사용자의 개인정보를 유출하는지 확인한다. 이 과정에서 우리는 구글에서 제공하는 위험한 권한 정보를 기준으로 개인정보와 직결되는 소스와 싱크를 선별하며, 동적분석 툴을 통해 각 API에 대한 정보를 후킹한다. 후킹되는 데이터를 통해 사용자는 해당 어플리케이션이 실제로 개인정보를 유출한다면 어떤 개인정보를 유출하는지 여부를 파악할 수 있다. 우리는 툴을 최신 버전의 API에 적용하기 위해 머신러닝을 통해 최신 버전의 안드로이드의 소스와 싱크를 분류하였으며, 이를 통해 86%의 정확도로 최신 배포 버전인 9.0 안드로이드의 API를 분류하였다. 또한 툴은 2,802개의 APK를 통해 평가되었으며, 개인정보를 유출하는 850개의 APK를 탐지하였다.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

검색 키워드를 활용한 하이브리드 협업필터링 기반 상품 추천 시스템 (A Hybrid Collaborative Filtering-based Product Recommender System using Search Keywords)

  • 이윤주;원하람;심재승;안현철
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.151-166
    • /
    • 2020
  • 추천시스템(recommender system)은 고객의 선호도를 예측하여 상품과 서비스를 제공하는 기법으로, 현재 다양한 온라인 서비스에 활용되고 있다. 이와 관련된 많은 선행 연구들은 협업필터링(collaborative filtering)에 기반한 추천시스템을 제안하였는데, 대부분의 경우 고객의 구매 내역 또는 평점 데이터만 사용하여 진행되었다. 오늘날 소비자들은 제품을 구매하는 과정에서 온라인 검색 행동을 하여 관심있는 제품을 찾는다. 그렇기 때문에 검색 키워드 데이터는 고객의 선호도를 파악하는데 매우 유용한 정보일 수 있다. 그러나 지금까지 추천시스템 연구에서 사용되는 경우는 거의 없었다. 이에 본 연구는 고객의 검색 행동에 주목하여 온라인 쇼핑몰 고객의 검색 키워드 데이터와 구매 데이터를 고려한 하이브리드 협업 필터링을 제안하였다. 본 연구는 제안된 모델의 적용 가능성을 검증하기 위해 실제 온라인 쇼핑몰 데이터를 사용하여 성능을 검증하였다. 연구 결과, 추천 상품의 개수가 많아질수록 고객의 검색 키워드를 기반으로 구축된 협업필터링의 추천 성능이 향상되는 반면 일반적인 협업필터링의 성능은 추천된 상품의 개수가 많아질수록 점차 감소함을 발견하였다. 따라서 본 연구는 검색 키워드 데이터를 활용한 하이브리드 협업필터링이 고객의 선호도를 반영한 추천할 수 있으며, 구매이력 데이터의 정보부족을 해결할 수 있음을 확인하였다. 이는 기존의 정량 데이터만을 활용한 추천 시스템이 아닌, 비정형 데이터인 텍스트를 사용함으로써 새로운 하이브리드 협업필터링 구축 방법을 제안했다는 점에서 의의가 있다.

국방분야 인공지능과 블록체인 융합방안 연구 (The study of Defense Artificial Intelligence and Block-chain Convergence)

  • 김세용;권혁진;최민우
    • 인터넷정보학회논문지
    • /
    • 제21권2호
    • /
    • pp.81-90
    • /
    • 2020
  • 본 연구는 인공지능의 국방 분야 활용 시 데이터 위·변조 방지를 위한 블록체인 기술의 적용방안을 연구 하는데 목적이 있다. 인공지능은 빅 데이터를 다양한 기계학습 방법론을 적용하여 군집화하거나 분류하여 예측하는 기술이며 미국을 비롯한 군사 강대국은 기술의 완성단계에 이르렀다. 만약 데이터를 기반으로 하는 인공지능의 데이터 위·변조가 발생한다면 데이터의 처리과정이 완벽하더라도 잘못된 결과를 도출할 것이며 이는 가장 큰 적의 위험요소가 될 수 있고 데이터의 위·변조는 해킹이라는 형태로 너무나 쉽게 가능하다. 만약 무기화된 인공지능이 사용하는 데이터가 북한으로부터 해킹되어 조작되어 진다면 예상치 못한 곳의 공격이 발생할 수도 있다. 따라서 인공지능의 사용을 위해서는 데이터의 위·변조를 방지하는 기술이 반드시 필요하다. 데이터의 위·변조 방지는 해수함수로 암호화된 데이터를 연결된 컴퓨터에 분산 저장하여 한 대의 컴퓨터가 해킹되더라도 연결된 컴퓨터의 과반 이상이 동의하지 않는 한 데이터가 손상되지 않는 기술인 블록체인을 적용함으로써 문제를 해결할 수 있을 것으로 기대한다.

KNIME 분석 플랫폼 기반 스마트 미터 빅 데이터 클러스터링 (Clustering of Smart Meter Big Data Based on KNIME Analytic Platform)

  • 김용길;문경일
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권2호
    • /
    • pp.13-20
    • /
    • 2020
  • 빅 데이터 관련 주요 논제 중의 하나는 방대한 시간 기반 또는 원격 측정 데이터의 가용성에 관한 문제이다. 현재 저비용 획득 및 저장 장치의 등장은 더 세밀한 분석에 사용될 상세한 시간 데이터를 얻을 수 있어서 배후 시스템에 대해 여러 가지 지식을 갖거나 미래의 이벤트를 더 정확히 예측할 수 있다. 특히, 스마트 미터가 설치된 수많은 가정 및 기업 등을 대상으로 전기 사용에 관한 고객 맞춤형 계약을 정의하는 것은 다른 무엇보다도 중요한 문제이다. 수많은 스마트 미터 데이터를 바탕으로 공통적인 전력 소비 형태를 몇 가지 그룹으로 구분할 필요가 있다. 이에 본 연구에서는 스마트 미터 측정 관련 공개 데이터와 자바 기반 공개 소스인 KNIME 플랫폼을 사용하여 스마트 미터 관련 빅 데이터 변환과 클러스터링을 나타낸다. 빅 데이터 구성 요소는 공개 소스는 아니지만, 시험판으로 사용할 수 있다. 스마트 미터 빅 데이터를 가져오고, 정리하고, 변환한 후 전력 사용량 행위와 관련된 각 미터 ID의 해석과 클러스터링에 적합한 DTW 접근 방식을 통해 전력 사용 행위에 관한 스마트 계약을 정의할 수 있다.

유출유 이동 가시화 및 입자 매칭 알고리즘 (Oil Spill Visualization and Particle Matching Algorithm)

  • 이현창;김용혁
    • 한국융합학회논문지
    • /
    • 제11권3호
    • /
    • pp.53-59
    • /
    • 2020
  • 허베이 스피리트호 기름유출사고와 같은 해양 유류유출사고에서 잘못된 초기대응은 경제 손실뿐만 아니라 생태계에 큰 피해를 입힌다. 하지만 다양한 변수가 존재하는 해양에서 유출유의 움직임을 예측하는 것은 매우 힘든일이다. 이를 해결하기 위해서 뜰개 데이터를 활용해서 바다위의 부유물의 이동을 연구하는 기존 연구인 입자예측을 확장하여 면단위로 예측을 하는 유출유 예측 가시화를 진행하였다. 해양 데이터 포맷인 HDF5에서 특정 위치의 해류, 풍속 데이터를 양선형 보간법을 이용해 추출한 뒤, 수많은 점들의 이동을 입자예측하여 그 결과를 폴리곤 및 히트맵을 이용해 가시화 하였다. 또한 뜰개데이터의 문제점인 데이터 부족과 유출유와 움직임이 다른 점을 해결 하기 위해 유출유로부터 입자 데이터를 얻어낼 수 있는 유출유 입자 매칭 알고리즘을 제안한다. 유출유 입자 매칭 알고리즘은 면단위 유출유의 모습을 입자화 하여 입자의 움직임을 추적하는 알고리즘이다. 주성분 분석을 이용하여 문제를 분할하고, 유출유의 이동 거리의 분산이 최소화 되는 지점으로 유전알고리즘을 이용해 매칭하였다. 유출유 가시화 결과 데이터로 검증한 결과 주성분 분석과 유전알고리즘을 이용한 입자매칭 알고리즘이 가장 성능이 뛰어난 것을 확인할 수 있었으며, 평균 데이터 오차는 3.2%로 의미있는 연구임을 확인하였다.

MapReduce 환경에서 재그룹핑을 이용한 Locality Sensitive Hashing 기반의 K-Nearest Neighbor 그래프 생성 알고리즘의 개선 (An Improvement in K-NN Graph Construction using re-grouping with Locality Sensitive Hashing on MapReduce)

  • 이인희;오혜성;김형주
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권11호
    • /
    • pp.681-688
    • /
    • 2015
  • k-Nearest Neighbor(k-NN)그래프는 모든 노드에 대한 k-NN 정보를 나타내는 데이터 구조로써, 협업 필터링, 유사도 탐색과 여러 정보검색 및 추천 시스템에서 k-NN그래프를 활용하고 있다. 이러한 장점에도 불구하고 brute-force방법의 k-NN그래프 생성 방법은 $O(n^2)$의 시간복잡도를 갖기 때문에 빅데이터 셋에 대해서는 처리가 곤란하다. 따라서, 고차원, 희소 데이터에 효율적인 Locality Sensitive Hashing 기법을 (key, value)기반의 분산환경인 MapReduce환경에서 사용하여 k-NN그래프를 생성하는 알고리즘이 연구되고 있다. Locality Sensitive Hashing 기법을 사용하여 사용자를 이웃후보 그룹으로 만들고 후보내의 쌍에 대해서만 brute-force하게 유사도를 계산하는 two-stage 방법을 MapReduce환경에서 사용하였다. 특히, 그래프 생성과정 중 유사도 계산하는 부분이 가장 많은 시간이 소요되므로 후보 그룹을 어떻게 만드는 것인지가 중요하다. 기존의 방법은 사이즈가 큰 후보그룹을 방지하는데 한계점이 있다. 본 논문에서는 효율적인 k-NN 그래프 생성을 위하여 사이즈가 큰 후보그룹을 재구성하는 알고리즘을 제시하였다. 실험을 통해 본 논문에서 제안한 알고리즘이 그래프의 정확성, Scan Rate측면에서 좋은 성능을 보임을 확인하였다.

실행계획 분석을 이용한 SQL Injection 공격 대응방안 (Counter Measures by using Execution Plan Analysis against SQL Injection Attacks)

  • 하만석;남궁정일;박수현
    • 전자공학회논문지
    • /
    • 제53권2호
    • /
    • pp.76-86
    • /
    • 2016
  • 최근 들어 급증하고 있는 보안 관련 사고들로 인하여 개인정보 및 기업정보의 관리에 대한 대책 마련이 시급한 가운데 있다. 보안 관련 사고 가운데 SQL Injection 공격은 가장 널리 악용되고, 오래된 전통적인 해킹 기법 중 하나이다. 최근까지도 웹 해킹을 시도하는 유형 중에서 높은 비중을 차지하고 있으며 그 공격 형태 또한 복잡해지고 있다. 많은 site에서 SQL Injection 공격에 대한 보완을 하여 이전보다 피해가 많이 줄어들기는 했으나 SQL Injection 공격에 의한 악의적인 관리자 권한 획득 및 비정상적인 로그인 등으로 인하여 여전히 많은 피해가 발생하고 있다. 더욱이 향후 사물인터넷 및 센서 빅데이터 환경이 널리 보급되면 수많은 디바이스들과 센서들이 연결되고 데이터의 양이 폭발적으로 증가하게 될 것이다. 그렇게 되면 현재보다 SQL Injection 공격에 의한 피해 규모는 더욱 커질 것이다. SQL Injection 공격에 대응하기 위해서는 많은 시간과 비용이 발생하게 되므로 시스템의 성능을 떨어뜨리지 않으면서도 신속정확하게 SQL Injection 공격을 판별하여 방어해야 할 것이다. 본 논문에서는 SQL Injection 공격에 대응하기 위하여 데이터 분석 및 기계학습을 통하여 웹로그 데이터를 검사하여 비정상적인 패턴의 입력값인 경우 SQL 명령어의 실행 계획을 분석하여 정상적인 SQL 명령어와 비정상적인 SQL 명령어를 판별하는 방안을 제시한다. 실험 및 성능 평가를 위해 사용자의 입력 또는 SQL Injection 공격툴에 의하여 입력되는 값을 실시간으로 실행계획을 분석하여 효과적으로 차단할 수 있음을 보여주었다.

미래교육 혁신을 위한 트렌드 분석과 예측: 20년간의 문헌 연구 데이터를 기반으로 한 키워드 추출 분석을 중심으로 (Analysis and Prediction of Trends for Future Education Reform Centering on the Keyword Extraction from the Research for the Last Two Decades)

  • 조헌국
    • 과학교육연구지
    • /
    • 제45권2호
    • /
    • pp.156-171
    • /
    • 2021
  • 본 연구는 미래 교육에 관련된 선행 연구를 분석하여 그 시기별 변화의 특징을 파악하고, 최근 나타나는 뉴스 기사를 비교하여 미래 교육에 대한 예측과 전망이 얼마나 일치하는지 비교 분석함으로써 교육을 위한 예측 모형 수립을 위한 시사점을 제공하고자 하였다. 이에 Web of Science를 통해 미래교육을 키워드로 포함한 국제전문학술지의 1,222건의 학술논문의 상세 서지정보를 수집하였고, 이를 2000년대부터 5년 단위로 4개의 시기로 구분하여 각 시기별 키워드를 추출하였다. 또한 최근 1년간 발간된 뉴스를 토대로 키워드를 추출하고 두 결과를 비교하여 얼마나 예측한 결과가 일치하는지 살펴보았다. 연구 결과, 문헌 조사 결과를 통한 키워드는 교사 교육을 제외하면 공통적으로 나타나는 주제나 경향성을 발견하기 어려웠으며 교육과정, 학습자 특성, 협동학습, 컴퓨터 기반 학습 등 교육과정과 내용, 방법, 환경 등 전반을 제시하고 있었다. 이에 반해 뉴스를 통해 도출된 키워드는 혁신학교나 미래교육센터 등 정부의 주요 추진 정책이나 코로나19와 관련된 키워드들이 부각되어 나타났다. 또한 온라인 플랫폼이나 콘텐츠 개발, 클라우드, 빅데이터, 개별학습 등 교육환경과 방법에 초점이 맞춰지고 있음을 파악할 수 있다. 뉴스를 통해 나타나는 키워드를 살펴보면 장기적인 예측을 통해 나타난 키워드는 거의 없었고, 최근 5년 내에 제시되었던 단기적인 내용들이나 최근 5년에서도 언급되지 않는 새로운 주제들을 다루고 있었다. 이는 미래 교육에 대한 예측과 망에 대한 모형이 실제 중장기적 예측에서는 여러 요인의 불확실성으로 인해 정확성을 기대하기 어렵다는 점을 의미한다. 이에 본 연구에서는 미래 교육 예측을 위해 필요한 과제와 방향에 대해 시사점으로 제시하였다.

K-means clustering analysis and differential protection policy according to 3D NAND flash memory error rate to improve SSD reliability

  • Son, Seung-Woo;Kim, Jae-Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권11호
    • /
    • pp.1-9
    • /
    • 2021
  • 3D-NAND 플래시 메모리는 평면적 구조인 2D-NAND 셀을 적층하는 방식으로 단위 면적당 고용량을 제공한다. 하지만 적층 공정의 특성상 각 레이어별 또는 물리적인 셀 위치에 따라 오류 발생 빈도가 달라질 수 있는 문제가 있다. 이와 같은 현상은 플래시 메모리의 쓰기/지우기(P/E) 횟수가 증가할수록 두드러진다. SSD와 같은 대부분의 플래시 기반 저장장치는 오류 교정을 위하여 ECC를 사용한다. 이 방법은 모든 플래시 메모리 페이지에 대하여 고정된 데이터 보호 강도를 제공하므로 물리적 위치에 따라 오류 발생률이 각기 다르게 나타나는 3D NAND 플래시 메모리에서는 한계를 보인다. 따라서 본 논문에서는 오류 발생률 차이를 보이는 페이지와 레이어를 K-means 머신러닝 알고리즘을 통해 군집으로 분류하고, 각 군집마다 차별화된 데이터 보호강도를 적용한다. 본 논문에서는 페이지와 레이어별로 오류 발생률이 현저하게 달라지는 내구성 테스트가 끝난 시점에서 측정된 오류 발생 횟수를 바탕으로 페이지와 레이어를 분류하고 오류에 취약한 영역에 대해서는 스트라이프에 패리티 데이터를 추가하여 차별화된 데이터 보호 강도 제공을 예시로 보인다. 본 논문에서는 기존의 ECC 또는 RAID 방식의 데이터 보호 구조와 비교하여 제안하는 차별화된 데이터 보호정책이 3D NAND 플래시 메모리의 신뢰성과 수명향상에 기여할 수 있음을 보인다.