DOI QR코드

DOI QR Code

Oil Spill Visualization and Particle Matching Algorithm

유출유 이동 가시화 및 입자 매칭 알고리즘

  • 이현창 (광운대학교 컴퓨터과학과) ;
  • 김용혁 (광운대학교 소프트웨어학부)
  • Received : 2020.01.13
  • Accepted : 2020.03.20
  • Published : 2020.03.28

Abstract

Initial response is important in marine oil spills, such as the Hebei Spirit oil spill, but it is very difficult to predict the movement of oil out of the ocean, where there are many variables. In order to solve this problem, the forecasting of oil spill has been carried out by expanding the particle prediction, which is an existing study that studies the movement of floats on the sea using the data of the float. In the ocean data format HDF5, the current and wind velocity data at a specific location were extracted using bilinear interpolation, and then the movement of numerous points was predicted by particles and the results were visualized using polygons and heat maps. In addition, we propose a spill oil particle matching algorithm to compensate for the lack of data and the difference between the spilled oil and movement. The spilled oil particle matching algorithm is an algorithm that tracks the movement of particles by granulating the appearance of surface oil spilled oil. The problem was segmented using principal component analysis and matched using genetic algorithm to the point where the variance of travel distance of effluent oil is minimized. As a result of verifying the effluent oil visualization data, it was confirmed that the particle matching algorithm using principal component analysis and genetic algorithm showed the best performance, and the mean data error was 3.2%.

허베이 스피리트호 기름유출사고와 같은 해양 유류유출사고에서 잘못된 초기대응은 경제 손실뿐만 아니라 생태계에 큰 피해를 입힌다. 하지만 다양한 변수가 존재하는 해양에서 유출유의 움직임을 예측하는 것은 매우 힘든일이다. 이를 해결하기 위해서 뜰개 데이터를 활용해서 바다위의 부유물의 이동을 연구하는 기존 연구인 입자예측을 확장하여 면단위로 예측을 하는 유출유 예측 가시화를 진행하였다. 해양 데이터 포맷인 HDF5에서 특정 위치의 해류, 풍속 데이터를 양선형 보간법을 이용해 추출한 뒤, 수많은 점들의 이동을 입자예측하여 그 결과를 폴리곤 및 히트맵을 이용해 가시화 하였다. 또한 뜰개데이터의 문제점인 데이터 부족과 유출유와 움직임이 다른 점을 해결 하기 위해 유출유로부터 입자 데이터를 얻어낼 수 있는 유출유 입자 매칭 알고리즘을 제안한다. 유출유 입자 매칭 알고리즘은 면단위 유출유의 모습을 입자화 하여 입자의 움직임을 추적하는 알고리즘이다. 주성분 분석을 이용하여 문제를 분할하고, 유출유의 이동 거리의 분산이 최소화 되는 지점으로 유전알고리즘을 이용해 매칭하였다. 유출유 가시화 결과 데이터로 검증한 결과 주성분 분석과 유전알고리즘을 이용한 입자매칭 알고리즘이 가장 성능이 뛰어난 것을 확인할 수 있었으며, 평균 데이터 오차는 3.2%로 의미있는 연구임을 확인하였다.

Keywords

References

  1. G. D. Kim, C. J. Lee & H. Kim. (2009). Prediction of the movement path of drifters using machine learning. The Korean Society for Marine Environment and Energy Conference, 2017(4), 102-102.
  2. C. J. Lee, G. D. Kim & Y. H. Kim. (2017). Performance comparison of machine learning based on neural networks and statistical methods for prediction of drifter movement. Journal of the Korea Convergence Society, 8(10), 45-52. DOI : 10.15207/JKCS.2017.8.10.045
  3. C. J. Lee & Y. H. Kim. (2018). Ensemble design of machine learning technigues: experimental verification by prediction of drifter trajectory. Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, 8(4), 57-67. DOI : 10.21742/AJMAHS.2018.03.24
  4. C. Cortes & V. Vapnik. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. DOI : 10.1007/BF00994018
  5. V. Vapnik. (2000). The nature of statistical learning theory, Verlag : Springer. DOI : 10.1007/978-1-4757-3264-1
  6. S. Wold, K. Esbensen & P. Geladi. (1987). Principal component analysis. Chemometrics and intelligent laboratory systems, 2(1-3), 37-52. DOI : 10.1016/0169-7439(87)80084-9
  7. L. T. Jolliffe & J. Cadima. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065). DOI : 10.1098/rsta.2015.0202.
  8. J. H. Holland, (1992). Genetic algorithms. Scientific american, 267(1), 66-73. https://doi.org/10.1038/scientificamerican0792-66
  9. H. C. Lee, D. P. Yu, D. Y. Kim & Y. H. Kim. (2018). Visualization of Hourly Oil Spill Prediction in Yellow. Proceedings of KIIS Spring Conference, 26(1), 197-198.
  10. H. C. Lee. (2019). Visualization of Hourly Oil Spill Prediction and Oil Spill Particle Matching Algorithm, Master dissertation, KW University, Seoul.
  11. R. Story. (2013). "Foulim - Folium 0.10.0 documentation", Foulim [Online]. https://python-visualization.github.io/folium/
  12. P. R. Smith. (1981). Bilinear interpolation of digital images. Ultramicroscopy, 6(2), 201-204. DOI : 10.1016/0304-3991(81)90061-9
  13. S. Anthony, L. Zhang & S. Granic. (2006). Methods to track single-molecule trajectories. Langmuir, 20(12), 5266-5272. DOI : 10.1021/la060244i
  14. R. Metzler, J. H. Jeon, A. G. Cherstvy & E. Barkai. (2014). Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Physical Chemistry Chemical Physics. 16(44), 24128-24164. DOI : 10.1039/C4CP03465A
  15. E. Meijering, O. Dzyubachyk & I. Smal. (2012). Methods for cell and particle tracking. Methods in enzymology, 504, 183-200. DOI : 10.1016/B978-0-12-391857-4.00009-4.
  16. D. Wirtz. (2009). Particle-Tracking microrheology of living cells: principles and applications. Annual Review of Biophysics. 38(1), 301-326. DOI : 10.1146/annurev.biophys.050708.133724.
  17. A. J. Umbarkar & P. D. Sheth, (2015). Crossover operators in genetic algorithms: a review. International Journal of Computer Applications journal on soft computing, 6(1), 34-36. DOI : 10.21917/ijsc.2015.0150