• 제목/요약/키워드: Machine Fault Classification

검색결과 65건 처리시간 0.029초

A Model for Machine Fault Diagnosis based on Mutual Exclusion Theory and Out-of-Distribution Detection

  • Cui, Peng;Luo, Xuan;Liu, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권9호
    • /
    • pp.2927-2941
    • /
    • 2022
  • The primary task of machine fault diagnosis is to judge whether the current state is normal or damaged, so it is a typical binary classification problem with mutual exclusion. Mutually exclusive events and out-of-domain detection have one thing in common: there are two types of data and no intersection. We proposed a fusion model method to improve the accuracy of machine fault diagnosis, which is based on the mutual exclusivity of events and the commonality of out-of-distribution detection, and finally generalized to all binary classification problems. It is reported that the performance of a convolutional neural network (CNN) will decrease as the recognition type increases, so the variational auto-encoder (VAE) is used as the primary model. Two VAE models are used to train the machine's normal and fault sound data. Two reconstruction probabilities will be obtained during the test. The smaller value is transformed into a correction value of another value according to the mutually exclusive characteristics. Finally, the classification result is obtained according to the fusion algorithm. Filtering normal data features from fault data features is proposed, which shields the interference and makes the fault features more prominent. We confirm that good performance improvements have been achieved in the machine fault detection data set, and the results are better than most mainstream models.

Fault Detection and Classification with Optimization Techniques for a Three-Phase Single-Inverter Circuit

  • Gomathy, V.;Selvaperumal, S.
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1097-1109
    • /
    • 2016
  • Fault detection and isolation are related to system monitoring, identifying when a fault has occurred, and determining the type of fault and its location. Fault detection is utilized to determine whether a problem has occurred within a certain channel or area of operation. Fault detection and diagnosis have become increasingly important for many technical processes in the development of safe and efficient advanced systems for supervision. This paper presents an integrated technique for fault diagnosis and classification for open- and short-circuit faults in three-phase inverter circuits. Discrete wavelet transform and principal component analysis are utilized to detect the discontinuity in currents caused by a fault. The features of fault diagnosis are then extracted. A fault dictionary is used to acquire details about transistor faults and the corresponding fault identification. Fault classification is performed with a fuzzy logic system and relevance vector machine (RVM). The proposed model is incorporated with a set of optimization techniques, namely, evolutionary particle swarm optimization (EPSO) and cuckoo search optimization (CSO), to improve fault detection. The combination of optimization techniques with classification techniques is analyzed. Experimental results confirm that the combination of CSO with RVM yields better results than the combinations of CSO with fuzzy logic system, EPSO with RVM, and EPSO with fuzzy logic system.

준지도학습 기반 반도체 공정 이상 상태 감지 및 분류 (Semi-Supervised Learning for Fault Detection and Classification of Plasma Etch Equipment)

  • 이용호;최정은;홍상진
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.121-125
    • /
    • 2020
  • With miniaturization of semiconductor, the manufacturing process become more complex, and undetected small changes in the state of the equipment have unexpectedly changed the process results. Fault detection classification (FDC) system that conducts more active data analysis is feasible to achieve more precise manufacturing process control with advanced machine learning method. However, applying machine learning, especially in supervised learning criteria, requires an arduous data labeling process for the construction of machine learning data. In this paper, we propose a semi-supervised learning to minimize the data labeling work for the data preprocessing. We employed equipment status variable identification (SVID) data and optical emission spectroscopy data (OES) in silicon etch with SF6/O2/Ar gas mixture, and the result shows as high as 95.2% of labeling accuracy with the suggested semi-supervised learning algorithm.

결함유형별 최적 특징과 Support Vector Machine 을 이용한 회전기계 결함 분류 (Fault Classification for Rotating Machinery Using Support Vector Machines with Optimal Features Corresponding to Each Fault Type)

  • 김양석;이도환;김성국
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1681-1689
    • /
    • 2010
  • Support Vector Machine(SVM)을 이용한 회전기계 진단 연구가 많이 수행되어 왔으나 결함 분류성능은 입력 특징과 더불어 다중 분류 방법, 이진분류기, 커널함수 등에 따라 다르다. SVM 을 이용한 대부분의 기존 연구들은 한번 입력 특징들을 선정하면 결함 분류시 동일한 특징데이터를 이용한다. 본 논문에서는 회전기계의 다양한 결함조건에서 측정한 진동신호로부터 추출한 통계적 특징들을 이용하여 각각의 결함을 분류하기 위한 최적 특징들을 선정한 후, 해당 결함상태를 분류하기 위한 SVM 학습과 분류에 각각 이용하였다. 실험자료를 이용한 검증 결과, 제안한 단계 분류 방법이 상대적으로 적은 학습시간으로 단일 다중 분류 방법과 유사한 분류 성능을 얻을 수 있었다.

An Availability of Low Cost Sensors for Machine Fault Diagnosis

  • SON, JONG-DUK
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.394-399
    • /
    • 2012
  • 최근 MEMS 센서는 기계상태감시에 있어서 전력소모, 크기, 비용, 이동성, 응용 등에 있어서 각광을 받고 있다. 특히, MEMS 센서는 스마트센서와 통합가능하고, 대량생산이 가능하여 가격이 저렴하다는 장점이 있다. 이와 관련한 기계상태감시를 위한 많은 실험적 연구가 수행되고 있다. 이 논문은 MEMS 센서들을 3 가지 인공지능 분류기 성능평가를 위한 비교연구에 대해 설명하고 있다. 회전기계에 MEMS 가속도와 전류센서들을 부착하여 데이터를 취득했고, 특징추출과 파라미터 최적화를 위해 Cross validation 기법을 사용하였다. MEMS 센서를 이용한 결함분류기 적용은 적합하다고 판단된다.

  • PDF

전류, 진동 및 자속센서기반 스마트센서를 이용한 기계결함진단 성능비교 (Comparing machine fault diagnosis performances on current, vibration and flux based smart sensors)

  • 손종덕;태성도;양보석;황돈하;강동식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.809-816
    • /
    • 2008
  • With increasing demands for reducing cost of maintenance which can detect machine fault automatically; low cost and intelligent functionality sensors are required. Rapid developments, in semiconductor, computing, and communication have led to a new generation of sensor called "smart" sensors with functionality and intelligence. The purpose of this research is comparison of machine fault classification between general analyzer signals and smart sensor signals. Three types of sensors are used in induction motors faults diagnosis, which are vibration, current and flux. Classification results are satisfied.

  • PDF

단일 클래스 분류기법을 이용한 반도체 공정 주기 신호의 이상분류 (One-class Classification based Fault Classification for Semiconductor Process Cyclic Signal)

  • 조민영;백준걸
    • 산업공학
    • /
    • 제25권2호
    • /
    • pp.170-177
    • /
    • 2012
  • Process control is essential to operate the semiconductor process efficiently. This paper consider fault classification of semiconductor based cyclic signal for process control. In general, process signal usually take the different pattern depending on some different cause of fault. If faults can be classified by cause of faults, it could improve the process control through a definite and rapid diagnosis. One of the most important thing is a finding definite diagnosis in fault classification, even-though it is classified several times. This paper proposes the method that one-class classifier classify fault causes as each classes. Hotelling T2 chart, kNNDD(k-Nearest Neighbor Data Description), Distance based Novelty Detection are used to perform the one-class classifier. PCA(Principal Component Analysis) is also used to reduce the data dimension because the length of process signal is too long generally. In experiment, it generates the data based real signal patterns from semiconductor process. The objective of this experiment is to compare between the proposed method and SVM(Support Vector Machine). Most of the experiments' results show that proposed method using Distance based Novelty Detection has a good performance in classification and diagnosis problems.

A New Support Vector Machine Model Based on Improved Imperialist Competitive Algorithm for Fault Diagnosis of Oil-immersed Transformers

  • Zhang, Yiyi;Wei, Hua;Liao, Ruijin;Wang, Youyuan;Yang, Lijun;Yan, Chunyu
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.830-839
    • /
    • 2017
  • Support vector machine (SVM) is introduced as an effective fault diagnosis technique based on dissolved gases analysis (DGA) for oil-immersed transformers with maximum generalization ability; however, the applicability of the SVM is highly affected due to the difficulty of selecting the SVM parameters appropriately. Therefore, a novel approach combing SVM with improved imperialist competitive algorithm (IICA) for fault diagnosis of oil-immersed transformers was proposed in the paper. The improved ICA, which is proved to be an effective optimization approach, is employed to optimize the parameters of SVM. Cross validation and normalizations were applied in the training processes of SVM and the trained SVM model with the optimized parameters was established for fault diagnosis of oil-immersed transformers. Three classification benchmark sets were studied based on particle swarm optimization SVM (PSOSVM) and IICASVM with four multiple classification schemes to select the best scheme for transformer fault diagnosis. The results show that the proposed model can obtain higher diagnosis accuracy than other methods. The comparisons confirm that the proposed model is an effective approach for classification problems.

스펙트로그램 이미지를 이용한 CNN 기반 자동화 기계 고장 진단 기법 (CNN-based Automatic Machine Fault Diagnosis Method Using Spectrogram Images)

  • 강경원;이경민
    • 융합신호처리학회논문지
    • /
    • 제21권3호
    • /
    • pp.121-126
    • /
    • 2020
  • 소리 기반 기계 고장 진단은 기계의 음향 방출 신호에서 비정상적인 소리를 자동으로 감지하는 것이다. 수학적 모델을 사용하는 기존의 방법은 기계 시스템의 복잡성과 잡음과 같은 비선형 요인이 존재하기 때문에 기계 고장 진단이 어려웠다. 따라서 기계 고장 진단의 문제를 딥러닝 기반 이미지 분류 문제로 해결하고자 한다. 본 논문에서 스펙트로그램 이미지를 이용한 CNN 기반 자동화 기계 고장 진단 기법을 제안한다. 제안한 방법은 기계의 결함 시 발생하는 주파수상의 특징 벡터를 효과적으로 추출하기 위해 STFT를 사용하였으며, STFT에 의해 검출된 특징 벡터들은 스펙트로그램 이미지로 변환하여 CNN을 이용해 기계의 상태별로 분류한다. 그 결과는 제안한 방법은 효과적으로 결함을 탐지할 뿐만 아니라 소리 기반의 다양한 자동 진단 시스템에도 효과적으로 활용될 수 있다.

이동통신망 자가 치유를 위한 기계학습 연구동향 (Research Status on Machine Learning for Self-Healing of Mobile Communication Network)

  • 권동승;나지현
    • 전자통신동향분석
    • /
    • 제35권5호
    • /
    • pp.30-42
    • /
    • 2020
  • Unlike in previous generations of mobile technology, machine learning (ML)-based self-healing research trend are currently attracting attention to provide high-quality, effective, and low-cost 5G services that need to operate in the HetNets scenario where various wireless transmission technologies are added. Self-healing plays a vital role in detecting and mitigating the faults, and confirming that there is still room for improvement. We analyzed the research trend in self-healing framework and ML-based fault detection, fault diagnosis, and fault compensation. We propose that to ensure that self-healing is a proactive instead of being reactive, we have to design an ML-based self-healing framework and select a suitable ML algorithm for fault detection, diagnosis, and outage compensation.