• Title/Summary/Keyword: MTTF

Search Result 82, Processing Time 0.028 seconds

A Study on Reliability Analysis & Determination of Replacement Cycle of the Railway Vehicle Contactor (철도차량 접촉기의 신뢰성 분석 및 교환주기 결정에 대한 연구)

  • Park, Minheung;Rhee, Sehun
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.316-324
    • /
    • 2017
  • Purpose: The purpose of this study is to determine the replacement cycle applied age replacement policy by reliability analysis based on railway vehicle contactor's failure history data. Method: We performed reliability analysis based on railway vehicle contactor's failure history data. We found a suitable distribution by goodness of fit test and predicted the reliability through estimation of scale & shape parameter. Considering cost information we determined the replacement cycle that minimize the opportunity cost. Result: Suitable distribution was the Weibull and scale parameter & shape parameter are estimated by reliability analysis. The replacement cycle was predicted and MTTF, $B_6$ percentile life were suggested additionally. Conclusion: We confirmed that failure rate type of railway vehicle contactor is degradation model having a time dependent characteristic and examined the replacement cycle in our country's operating environment. We expect that this study result contribute to railway operation agency for maintenance policy decision.

Reliability Evaluation and failure Analysis for High Voltage Ceramic Capacitor (고압 커패시터의 고장분석과 신뢰성 평가)

  • 김진우;송옥병;신승우;이희진;신승훈;유동수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.337-337
    • /
    • 2001
  • High voltage ceramic capacitors are widely applied in power electronic circuits, such as filters, snubbers, and resonant circuits, due to their excellent features of high voltage endurance and low aging. This paper presents a result of failure analysis and reliability evaluation for high voltage ceramic capacitors. The failure nodes and failure mechanisms were identified in order to understand the failure physics in a component. The causes of failure mechanisms for zero resistance phenomena under withstanding voltage test in high voltage ceramic capacitors molded by epoxy resin were studied by establishing an effective closed-loop failure analysis. Also, the condition for dielectric breakdown was investigated. Particular emphasis was placed on breakdown phenomena at the ceramic-epoxy interface. The validity of the results in this study was confirmed by the results of accelerated testing. Thermal shock test as well as pressure cooker test for high voltage ceramic capacitor mounted on a magnetron were implemented. Delamination between ceramic and epoxy, which, might cause electrical short in underlying circuitry, can occur during curing or thermal cycling. The results can be conveniently used to quickly identify defective lots, determine mean time to failure (MTTF) of each lot at the level of Inspection, and detect major changes in the vendors processes.

  • PDF

A Study of assessment criteria and lifetime prediction for power supply of electrodeless fluorescent lamp (무전극형광램프용 전원장치의 평가기준 및 수명예측)

  • Ham, Jung-Keol;Shin, Jong-Wook
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.25-30
    • /
    • 2004
  • This paper gives an assessment criteria and average failure lifetime prediction for power supply of electrodeless fluorescent lamp. The paper present electric appliance safety standard and performance standard for power supply of electrodeless fluorescent lamp. also, It presents the Failure Rate or Mean Time To Failure(MTTF) for power supply of electrodeless fluorescent lamp. We suggest the assessment criteria and improve methods of the reliability on the design basis for the electrodeless fluorescent system.

  • PDF

A Study on Accelerated Life Test of Halogen Lamps for Medical Device (의료용 할로겐램프의 가속수명시험에 관한 연구)

  • Jung, Jae Han;Kim, Myung Soo;Lim, Heonsang;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.4
    • /
    • pp.659-672
    • /
    • 2013
  • Purpose: The purpose of this study was to estimate life time of halogen lamps and acceleration factors using accelerated life test. Methods: Voltage was selected as an accelerating variable through the technical review about failure mechanism. The test was performed at 14.5V, 15.5V and 16.5 for 4,471 hours. It was assumed that the lifetime of Halogen lamps follow Weibull distribution and the inverse power life-stress relationship models. Results: Mean lifetimes of pin and screw types were 19,477 hours and 6,056 hours, respectively. In addition, acceleration factor of two items are calculated as 4.8 and 2.2 based on 15.5V, respectively. Conclusion: The life-stress relationship, acceleration factor, and MTTF at design condition are estimated by analyzing the accelerated life test data. These results suggest that voltage was very important factor to accelerate life time in the case of halogen lamps and the life time of pin type is three times longer than screw type lamps.

Uncooled Microbolometer FPA Sensor with Wafer-Level Vacuum Packaging (웨이퍼 레벨 진공 패키징 비냉각형 마이크로볼로미터 열화상 센서 개발)

  • Ahn, Misook;Han, Yong-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.300-305
    • /
    • 2018
  • The uncooled microbolometer thermal sensor for low cost and mass volume was designed to target the new infrared market that includes smart device, automotive, energy management, and so on. The microbolometer sensor features 80x60 pixels low-resolution format and enables the use of wafer-level vacuum packaging (WLVP) technology. Read-out IC (ROIC) implements infrared signal detection and offset correction for fixed pattern noise (FPN) using an internal digital to analog convertor (DAC) value control function. A reliable WLVP thermal sensor was obtained with the design of lid wafer, the formation of Au80%wtSn20% eutectic solder, outgassing control and wafer to wafer bonding condition. The measurement of thermal conductance enables us to inspect the internal atmosphere condition of WLVP microbolometer sensor. The difference between the measurement value and design one is $3.6{\times}10-9$ [W/K] which indicates that thermal loss is mainly on account of floating legs. The mean time to failure (MTTF) of a WLVP thermal sensor is estimated to be about 10.2 years with a confidence level of 95 %. Reliability tests such as high temperature/low temperature, bump, vibration, etc. were also conducted. Devices were found to work properly after accelerated stress tests. A thermal camera with visible camera was developed. The thermal camera is available for non-contact temperature measurement providing an image that merged the thermal image and the visible image.

Reliability Analysis of Redundant Architecture of Dependable Control System (다중화 구조 제어시스템에 대한 신뢰도 분석)

  • Noh, Jinpyo;Park, Jaehyun;Son, Kwang-Seop;Kim, Dong-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.328-333
    • /
    • 2013
  • Since a slight malfunction of control systems in a nuclear power plant may cause huge catastrophes, such control systems usually have multiple redundancy and reliable features, and their reliability and availability should be analyzed and verified thoroughly. This paper performed the reliability analysis of the SPLC (Safety Programmable Logic Controller) that is under developed as the control systems for the next generation nuclear power plant. One of the key features of SPLC is that it has multiple redundancy modes as faults happen, which means the reliability analysis for one fixed redundant model is not enough to analyze the reliability of SPLC. With considering this reconfigurable concept, FTA (Fault Tree Analysis) was used to capture fault-relationship among sub-modules. The analysis results show that MTTF (Mean Time to Fault) of SPLC is 45,080 hours, which is a about 4.5 times longer than the regulation, 10,000 hours.

Performance and Reliability Characteristics of the Free Piston Free Displacer Stirling Cryocooler

  • Park, Seong-Je;Hong, Yong-Ju;Kim, Hyo-Bong;Koh, Deuk-Yong;Kim, Yang-Hoon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.46-51
    • /
    • 2004
  • This paper presents the results of a series of performance and reliability tests for the Stirling cryocooler. Infrared sensor systems incorporating cryocoolers are required to be qualified to the appropriate specification for the performance and reliability. FPFD Stirling cryocooler is currently under development for cooling infrared detector. Manufactured Stirling cryocooler delivers approximately 0.9W cooling at 80K for 30W∼40W of input power. It takes approximately 2 minutes to cool down to 80K at the ambient temperature of 23$^{\circ}C$. Performance characteristics for the vibration, acoustic noise, EMI and leak rate of the Stirling cryocooler are evaluated. We performed low and high temperature keeping test from -32$^{\circ}C$ to +52$^{\circ}C$ and operating test at high and low temperature cyclic range with acceptance tests performed at scheduled intervals. Cooling capacity is determined as a function of the temperatures at the compressor, hot end and cold tip at the expander. Finally, we describe the experimental facility for the MTTF evaluation and some typical results of the Stirling cryocooler.

A Study of assessment criteria and reliability improvement for power supply of electrodeless fluorescent lamp (고효율 무전극형광등용 전원장치의 평가기준 및 신뢰성향상 연구)

  • 함증걸;신종욱
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.34-40
    • /
    • 2003
  • This paper gives an assessment criteria and reliability improvement for high frequency power supply of high efficacy electrodeless fluorescent lamp. The electrodeless fluorescent lamp system consist of electrodeless fluorescent lamp, high frequency power supply and lighting fixtures. The high frequency power supply has a shortest life at the system. Therefore It is need th assess the Failure Rate or mean Time To Failure(MTTF) for the high frequency power supply of electrodeless fluorescent lamp system and improve the reliability at design. We suggest the assessment criteria and improve methods of the reliability on the design basis for the electodeless fluorescent system.

PROBABILISTIC ANALYSIS OF A SYSTEM CONSISTING OF TWO SUBSYSTEMS IN THE SERIES CONFIGURATION UNDER COPULA REPAIR APPROACH

  • Raghav, Dhruv;Pooni, P.K.;Gahlot, Monika;Singh, V.V.;Ayagi, Hamisu Ismail;Abdullahi, Ameer Hassan
    • The Pure and Applied Mathematics
    • /
    • v.27 no.3
    • /
    • pp.137-155
    • /
    • 2020
  • Redundancy is commonly employed to improve system reliability. In most situations, components in the standby configurations are assumed statistically similar but independent. In many realistic models, all parts in standby are not treated as identical as they have different failure possibilities. The operational structure of the system has subsystem-1 with five identical components working under 2-out-of-5: G; policy, and the subsystem-2 has two units and functioning under 1-out-of-2: G; policy. Failure rates of units of subsystems are constant and assumed to follow an exponential distribution. Computed results give a new aspect to the scientific community to adopt multi-dimension repair in the form of the copula.

A Study on the Evaluation Criteria Development for Selecting Intensive Management Items and Its Application Plan (집중관리부품 선정을 위한 평가요소 개발과 활용방안 연구)

  • Woo, Hee-Sung;Jung, Sang-Gyu;Lee, Chang-Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.3
    • /
    • pp.475-486
    • /
    • 2013
  • Purpose: In this study, we propose the evaluation criteria and method for selecting intensive management items which, in order to improve the parts management.1) Methods: Parts management such as MIL-STD-3018, SD-19, SD-22 is used for devising the proposed evaluation criteria and method of selecting intensive management items. Especially, proposed evaluation criteria is customized by using AHP method. Results: We approved the importance of evaluation criteria for selecting intensive management items using AHP method. In production step, the parts problem record, the parts reliability, the supplier reliability, DMSM S1). In development step, the parts problem record, a counterfeit, the parts reliability, MTTF2). Conclusion: The evaluation criteria and method for selecting intensive management items which is applicable to the domestic weapon acquisition environment is proposed.