• Title/Summary/Keyword: MSE(Mean Squared Error)

Search Result 177, Processing Time 0.021 seconds

Prediction of Delivery Quality Assurance Via Machine Learning in Helical Tomotherapy (방사선치료 시 다양한 기계학습을 이용한 선량품질관리 결과의 예측)

  • Kyung Hwan Chang
    • Journal of radiological science and technology
    • /
    • v.47 no.4
    • /
    • pp.263-270
    • /
    • 2024
  • The objective of this study was to evaluate the accuracy and impact of leaf open time (LOT) and pitch using various machine learning models on EBT film-based delivery quality assurance (DQA) performed on 211 patients of helical tomotherapy (HT). We randomly selected passed (n=191) and failed (n=20) DQA measurements to evaluate the accuracy of the k-nearest neighbor (KNN), support vector machine (SVM), naive Bayes (NB) and logistic regression (LR) models using scale-dependent metrics such as the coefficient of determination (R2), mean squared error (MSE), and root MSE (RMSE). We evaluated the performance of the four prediction models in terms of the accuracy, precision, sensitivity, and F1-score using a confusion matrix, finding the NB and LR models to achieve optimal results. The results of this study are expected to reduce the workload of medical physicists and dosimetrists by predicting DQA results according to LOT and pitch in advance.

Error Intensity Function Models for ML Estimation of Signal Parameter, Part II : Applications to Gaussian and Impulsive Noise Environments (신호 파라미터의 ML추정 기법에 대한 에러 밀도 함수모델에 관한 연구 II : 가우시안 및 임펄스 잡음 환경에의 적용)

  • Kim, Joong Kyu
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.1
    • /
    • pp.85-95
    • /
    • 1995
  • The error intensity models for the ML estimation of a signal parameter have been developed in a companion paper [1]. While the methods described in [1] are applicable to any estimation problem with continuous parameters, our main application in this paper is the time delay estimation, and comparisons among the models derived in [1] (i.e. LC, LM, and ALM models)have been made. We first consider the case where only additive Gaussian noise is involved, and then the shot noise environment where coherent impulsive noise is also involved in addition to the Gaussian noise. We compare the models in terms of the probability of error, MSE(Mean Squared Error), and the computational complexity, which are the most important performance criteria in the analysis of parameter estimation. In conclusion, the ALM model turned out to be the most adequate model of all from the viewpoints of the criteria mentioned above.

  • PDF

Performance Improvement of MIMO MC-CDMA system with multibeamforming

  • Kim, Chan Kyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.76-83
    • /
    • 2019
  • In this paper, we propose the beamforming algorithm for the performance improvement of MIMO MC-CDMA system. The proposed multibeamforming of MIMO MC-CDMA structure having the same number of beamformer as the number of transmit antenna is derived by calculating the error signals between the coded pilot symbols and the corresponding received signals from the multiple transmitters of the desired user in the frequency domain, transforming the frequency-domain error signals into time-domain error signals, and updating the weights of the multibeamformer in the time-domain in the direction minimizing the mean squared error (MSE). The proposed approach can track each direction of arrival (DOA) of the signals from multi-antennas of a desired user. The performance improvement is investigated through computer simulation by applying the proposed approach to MIMO MC-CDMA system in a multipath fading channel with multiusers.

Using multivariate regression and multilayer perceptron networks to predict soil shear strength parameters

  • Ahmed Cemiloglu
    • Geomechanics and Engineering
    • /
    • v.39 no.2
    • /
    • pp.129-142
    • /
    • 2024
  • The most significant soil parameters that are utilized in geotechnical engineering projects' design and implementations are soil strength parameters including friction (ϕ), cohesion (c), and uniaxial compressive strength (UCS). Understanding soil shear strength parameters can be guaranteed the design success and stability of structures. In this regard, professionals always looking for ways to get more accurate estimations. The presented study attempted to investigate soil shear strength parameters by using multivariate regression and multilayer perceptron predictive models which were implemented on 100 specimens' data collected from the Tabriz region (NW of Iran). The uniaxial (UCS), liquid limit (LL), plasticity index (PI), density (γ), percentage of fine-grains (pass #200), and sand (pass #4) which are used as input parameters of analysis and shear strength parameters predictions. A confusion matrix was used to validate the testing and training data which is controlled by the coefficient of determination (R2), mean absolute (MAE), mean squared (MSE), and root mean square (RMSE) errors. The results of this study indicated that MLP is able to predict the soil shear strength parameters with an accuracy of about 93.00% and precision of about 93.5%. In the meantime, the estimated error rate is MAE = 2.0231, MSE = 2.0131, and RMSE = 2.2030. Additionally, R2 is evaluated for predicted and measured values correlation for friction angle, cohesion, and UCS are 0.914, 0.975, and 0.964 in the training dataset which is considerable.

A Generalized Ratio-cum-Product Estimator of Finite Population Mean in Stratified Random Sampling

  • Tailor, Rajesh;Sharma, Balkishan;Kim, Jong-Min
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.1
    • /
    • pp.111-118
    • /
    • 2011
  • This paper suggests a ratio-cum product estimator of a finite population mean using information on the coefficient of variation and the fcoefficient of kurtosis of auxiliary variate in stratified random sampling. Bias and MSE expressions of the suggested estimator are derived up to the first degree of approximation. The suggested estimator has been compared with the combined ratio estimator and several other estimators considered by Kadilar and Cingi (2003). In addition, an empirical study is also provided in support of theoretical findings.

Motion Estimation Using the Relation Between Rate and Distortion (부호화율과 일그러짐의 관계를 이용하는 움직임 추정)

  • 양경호;김태정;이충웅
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.8
    • /
    • pp.66-73
    • /
    • 1992
  • This paper proposes a new motion estimation algorithm which takes into account the rate-distortion relation in encoding motion compensated error images. The proposed algorithm is based on a new block-matching criterion which is the function of not only the mean squared block-matching error but also the code length for the entropy coded motion vector. The proposed algorithm optimizes the trade-off between the bit rate for motion compensated error images and the bit rate for the motion vectors. Simulation results show that in the motion compensated image coding the proposed motion estimator improves the overall performance by 0.5 dB when compared to the motion estimator which uses MSE only.

  • PDF

Classification of Imbalanced Data Using Multilayer Perceptrons (다층퍼셉트론에 의한 불균현 데이터의 학습 방법)

  • Oh, Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.141-148
    • /
    • 2009
  • Recently there have been many research efforts focused on imbalanced data classification problems, since they are pervasive but hard to be solved. Approaches to the imbalanced data problems can be categorized into data level approach using re-sampling, algorithmic level one using cost functions, and ensembles of basic classifiers for performance improvement. As an algorithmic level approach, this paper proposes to use multilayer perceptrons with higher-order error functions. The error functions intensify the training of minority class patterns and weaken the training of majority class patterns. Mammography and thyroid data-sets are used to verify the superiority of the proposed method over the other methods such as mean-squared error, two-phase, and threshold moving methods.

Optimization of Abdominal X-ray Images using Generative Adversarial Network to Realize Minimized Radiation Dose (방사선 조사선량의 최소화를 위한 생성적 적대 신경망을 활용한 복부 엑스선 영상 최적화 연구)

  • Sangwoo Kim;Jae-Dong Rhim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.191-199
    • /
    • 2023
  • This study aimed to propose minimized radiation doses with an optimized abdomen x-ray image, which realizes a Deep Blind Image Super-Resolution Generative adversarial network (BSRGAN) technique. Entrance surface doses (ESD) measured were collected by changing exposure conditions. In the identical exposures, abdominal images were acquired and were processed with the BSRGAN. The images reconstructed by the BSRGAN were compared to a reference image with 80 kVp and 320 mA, which was evaluated by mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM). In addition, signal profile analysis was employed to validate the effect of the images reconstructed by the BSRGAN. The exposure conditions with the lowest MSE (about 0.285) were shown in 90 kVp, 125 mA and 100 kVp, 100 mA, which decreased the ESD in about 52 to 53% reduction), exhibiting PSNR = 37.694 and SSIM = 0.999. The signal intensity variations in the optimized conditions rather decreased than that of the reference image. This means that the optimized exposure conditions would obtain reasonable image quality with a substantial decrease of the radiation dose, indicating it could sufficiently reflect the concept of As Low As Reasonably Achievable (ALARA) as the principle of radiation protection.

Improvement of multi layer perceptron performance using combination of adaptive moments and improved harmony search for prediction of Daecheong Dam inflow (대청댐 유입량 예측을 위한 Adaptive Moments와 Improved Harmony Search의 결합을 이용한 다층퍼셉트론 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.63-74
    • /
    • 2023
  • High-reliability prediction of dam inflow is necessary for efficient dam operation. Recently, studies were conducted to predict the inflow of dams using Multi Layer Perceptron (MLP). Existing studies used the Gradient Descent (GD)-based optimizer as the optimizer among MLP operators to find the optimal correlation between data. However, the GD-based optimizers have disadvantages in that the prediction performance is deteriorated due to the possibility of convergence to the local optimal value and the absence of storage space. This study improved the shortcomings of the GD-based optimizer by developing Adaptive moments combined with Improved Harmony Search (AdamIHS), which combines Adaptive moments among GD-based optimizers and Improved Harmony Search (IHS). In order to evaluate the learning and prediction performance of MLP using AdamIHS, Daecheong Dam inflow was learned and predicted and compared with the learning and prediction performance of MLP using GD-based optimizer. Comparing the learning results, the Mean Squared Error (MSE) of MLP, which is 5 hidden layers using AdamIHS, was the lowest at 11,577. Comparing the prediction results, the average MSE of MLP, which is one hidden layer using AdamIHS, was the lowest at 413,262. Using AdamIHS developed in this study, it will be possible to show improved prediction performance in various fields.

Development of new artificial neural network optimizer to improve water quality index prediction performance (수질 지수 예측성능 향상을 위한 새로운 인공신경망 옵티마이저의 개발)

  • Ryu, Yong Min;Kim, Young Nam;Lee, Dae Won;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.73-85
    • /
    • 2024
  • Predicting water quality of rivers and reservoirs is necessary for the management of water resources. Artificial Neural Networks (ANNs) have been used in many studies to predict water quality with high accuracy. Previous studies have used Gradient Descent (GD)-based optimizers as an optimizer, an operator of ANN that searches parameters. However, GD-based optimizers have the disadvantages of the possibility of local optimal convergence and absence of a solution storage and comparison structure. This study developed improved optimizers to overcome the disadvantages of GD-based optimizers. Proposed optimizers are optimizers that combine adaptive moments (Adam) and Nesterov-accelerated adaptive moments (Nadam), which have low learning errors among GD-based optimizers, with Harmony Search (HS) or Novel Self-adaptive Harmony Search (NSHS). To evaluate the performance of Long Short-Term Memory (LSTM) using improved optimizers, the water quality data from the Dasan water quality monitoring station were used for training and prediction. Comparing the learning results, Mean Squared Error (MSE) of LSTM using Nadam combined with NSHS (NadamNSHS) was the lowest at 0.002921. In addition, the prediction rankings according to MSE and R2 for the four water quality indices for each optimizer were compared. Comparing the average of ranking for each optimizer, it was confirmed that LSTM using NadamNSHS was the highest at 2.25.