• Title/Summary/Keyword: MSC/PATRAN

Search Result 59, Processing Time 0.031 seconds

Diamond tool holder design for cutting force measurement (미세절삭력 측정을 위한 다이아몬드 Tool Holder 설계)

  • 정상화;김상석;도철진;김건희;유병주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.63-67
    • /
    • 2000
  • A tool holder system has been designed to measure cutting forces in diamond turning. This system includes a 3-component piezo-electric tranducer. In this research, tool holder system is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of structure is simulated by MSC/NASTRAN, for the purpose of developing the effective design. In addition, tool holder system is verified by vibration test using accelerometer. This system will aid to the development of Fast Tool Servo (FTS)

  • PDF

Dynamic Characteristics of the Tilting Turret System for Multi-Purpose Lathe (다기능 복합가공기의 틸팅터릿 시스템의 진동특성 해석)

  • 정상화;김상석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.215-219
    • /
    • 2000
  • In multi-purpose lathe, the design of tilting turret slide system has on important and critical role enhance accuracy of the machining process. Tilting turret unit is traveled by 3-axis slide systems. There is a need to design this part very carefully. In this research, 3-axis sliding system with tilting turret is modeled by considering the element dividing, material proprties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of each structures such as saddle, careg, and turret are simulated by MSC/MASTRAN, for the purpose of developing the effective design.

  • PDF

Parametric Study on the Finite Element Idealization Method for Multi-Spar WIng (다중스파 날개의 유한요소 이상화 방법에 관한 인자연구)

  • Kweon, Jin-Hwe;Kang, Gyong-guk;Park, Chan-Woo;Kim, Seung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.107-115
    • /
    • 2002
  • A parametric study has been conducted to evaluate the effects of finite element modeling methods on the internal loads, sizing and the weight of the multi-spar aircraft wing structures. The wing is idealized into total 18finite element models and subjected to 4typical external load conditions. An automatic sizing algorithm based on MSC/NASTRAN and MSC/PATRAN is developed. The results show that the critical part affection the internal loads and weight of the structure is wing skin. Effect of modeling of the spar and rib on the structural behavior is not manifest. On the contrast to the general expectation, the models using the bending-resistant elements show the heavier weight than ones by the elements without bending stiffness. From this results, designers of multi-spar wing are recommended to construct the finite element model considering the bending stiffness, or to check the characteristics of the structure before modeling.

Optimal Manufacturing of Composite Wing Ribs in Solar-Powered UAVs: A Study (태양광 무인기 복합재 윙 리브 최적 제작 연구)

  • Yang, Yongman;Kim, Myungjun;Kim, Jinsung;Lee, Sooyong
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.50-58
    • /
    • 2016
  • In our preceding study, we reported that the use of light, composite-material wings in long-endurance Solar-Powered UAVs is a critical factor. Ribs are critical components of wings, which prevent buckling and torsion of the wing skin. This study was undertaken to design and manufacture optimal composite ribs. The ribs were manufactured by applying laminated-layer patterns and shapes, considering the anisotropic properties of the composite material. Through the finite element analysis using the MSC Patran/Nastran, the maximum load and the displacement shape were identified. Based on the study results measured by structural tests, we present an optimal design of ribs.

Development of the Buckling Strength Assessment System based on Offshore Structure Design Code (해양구조물 설계코드에 기반한 좌굴강도 평가 시스템 개발)

  • Kim, Ul-Nyeon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.38-45
    • /
    • 2017
  • FPSO is widely used to develop deep sea oil fields and HHI has constructed ten(10) FPSOs. During these constructions, relevant structural design criteria such as yielding, buckling, fatigue, collision and impact strength were applied to verify structural safety. To apply the buckling strength evaluation for structures, the critical buckling stresses and applied stresses of relevant panels should be calculated. The plate and stiffened panels are to be idealized, which are needed much time and efforts by designers. Therefore, program development is necessary in order to evaluate the buckling strength conveniently and accurately. In this study, the buckling strength assessment system by using offshore code, DNV-RP-C201 was developed under MSC/PATRAN, pre-post program of finite element method. Graphic user interface program is written in MSC/PATRAN PCL functions. Source program to evaluate the buckling strength is developed in FORTRAN programming languages. The developed program is verified by comparing with the results of the Nauticus Hull developed by DNV Classification Society, and applied to the marine construction project conducted by Hyundai Heavy Industries LTD.

  • PDF

Structural analysis of a thick composite rotor hub system by using equivalent properties (등가 물성을 이용한 두꺼운 복합재 로터 허브 시스템의 구조 해석)

  • ;Yanti Rachmadini
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.7-14
    • /
    • 2003
  • Modeling of thick composite structures for finite element analysis is relatively complicated. 2-D plane elements may cause inaccurate result since the plane stress condition cannot be applicable in these structures. Therefore a 3-D modeling should be used. However, the difficulty to model all the layers with different material properties and ply orientation arise in this case. In this paper, an equivalent modeling is proposed and numerically tested for analysis of thick composite structures. By grouping layers with same material and ply orientation, number of elements through the thickness is remarkably reduced and still the result is close enough to the one from a detail finite element model. MSC/NASTRAN and PATRAN are used for the analysis. The proposed modeling technique has been applied for analysis of composite rotor hub system designed by Korea Aerospace Research Institute(KARI). Using the proposed equivalent modeling technique, we could conduct stress analysis for the hub system and check the safety factor of each part.

Analysis of Excitation Forces for the Prediction of the Vehicle Interior Noise by the Powertrain (Powertrain에 의한 차량실내소음 예측을 위한 엔진 가진력 해석에 관한 연구)

  • Lee, Joo-Hyung;Kim, Sung-Jong;Kim, Tae-Yong;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1244-1251
    • /
    • 2006
  • The objective of this paper is to get excitation forces of the engine at each of the brackets for the prediction of the vehicle interior noise by the powertrain. A powertrain geometry model is produced by CATIA and its FE model is made by MSC/Patran. A vibration mode analysis and a running mode analysis are experimentally implemented. After getting a satisfied MAC value by doing a correlation about a measured mode analysis value and analyzed value through MSC/Nastran software, all components are assembled through MSC/ADAMS software which is a dynamic analysis tool. We can predict the vibration of brackets which is the last points to occur the force of the engine combustion by analyzing the combustion force produced by engine mechanism.

A Basic Structural Design for large Floating Crane (대형 해상크레인의 구조 기본 설계)

  • PARK CHAN-HU;KIM BYUNG-WOO;HA MUN-KEUN;CHUN MIN-SUNG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.42-47
    • /
    • 2004
  • This paper describes basic structural design for the large floating crane barge of fixed undulation type. Structural analysis is performed to divide two parts because crane barge is composed two parts, crane part of jib boom back stay and back tower and barge part to support crane part. The structural strength for jib boom structure members are in compliance with JIS B 8821 and scantling of all barge structural members are in compliance with the requirement of KR (Korean Register of Shipping) Steel Barges and Rules for Classification of Steel Ships. For the structural analysis of large floating crane, MSC/NASTRAN & MSC/PATRAN software is used.

  • PDF

Tool Holder Design for Measurement of Cutting Force in Diamond Turning Process (다이아몬드 터닝 가공의 미세절삭력 측정을 위한 Tool Holder 설계)

  • 정상화;김상석;도철진;홍권희;김건희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.68-71
    • /
    • 2000
  • A tool holder system has been designed to measure cutting forces in diamond turning. This system includes a 3-component piezo-electric tranducer. In this research, tool holder system is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of structure is simulated by MSC/NASTRAN, for the purpose of developing the effective design. In addition, tool holder system is verified by vibration test using accelerometer. This system will aid to the development of Fast Tool Servo.

  • PDF

Transonic/Supersonic Flutter Analysis of a Fighter Wing with Tip-Store (끝단 장착물이 있는 항공기 날개의 천음속/초음속 플러터 해석)

  • Kim, Dong-Hyun;Lee, In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1198-1203
    • /
    • 2000
  • In this study, a nonlinear aeroelastic analysis system for the fighter wing with tip-store has been developed additionally in the transonic and supersonic flow region. The unsteady CFD code based on the transonic small disturbance theory has been incorporated to consider the numerical capability for the aerodynamic nonlinear effects. The coupled time-integration method is used to observe the detailed nonlinear aeroelastic responses for elastic wings in their flight. condition. A conservative wing-box model of a fighter wing with tip-store is modeled by MSC/PATRAN and the corresponding free vibration analysis has been performed by MSC/NASTRAN. The results of flutter analyses are presented in the subsonic, transonic and supersonic flow regime.

  • PDF