• Title/Summary/Keyword: MS spectrometry

Search Result 1,957, Processing Time 0.025 seconds

Identification of Nandrolone and its Metabolite 5α-Estran-3β, 17α-Diol in Horse Urine after Chemical Derivatization by Liquid Chromatography Tandem Mass Spectrometry

  • Dubey, Saurabh;Beotra, Alka
    • Mass Spectrometry Letters
    • /
    • v.8 no.4
    • /
    • pp.90-97
    • /
    • 2017
  • Androgenic anabolic steroids (AASs) are synthetic derivatives of testosterone with a common structure containing cyclopentanoperhydrophenanthrene nucleus. Their use enhances the muscle building capacity and is beneficial during performance. The AASs are one of the most abused group of substances in horse doping. Liquid chromatography tandem mass spectrometry ($LC/MS^n$) has been successfully applied to the detection of anabolic steroids in biological samples. However, the saturated hydroxysteroids viz: nandrolone, $5{\alpha}-estrane-3{\beta}$, $17{\alpha}-diol$ exhibit lower detection responses in electrospray ionisation (ESI) because of their poor ionisation efficiency. To overcome this limitation pre-column chemical derivatization has been introduced to enhance their detection responses in $LC-ESI-MS^n$ analysis. The aim of present study was to develop a sensitive method for identification and confirmation of nandrolone and its metabolite in horse urine incorporating pre-column derivatization using picolinic acid. The method consists of extraction of targeted steroid conjugates by solid phase extraction (SPE). The eluted steroid conjugates were hydrolysed by methanolysis and free steroids were recovered with liquid-liquid extraction. The resulting steroids were derivatized to form picolinoyl esters and identification was done using LC-ESI-MS/MS in positive ionization mode. The picolinated steroid adduct enhanced the detection levels in comparison to underivatized steroids.

Determination of Polybrominated Biphenyls in Biota Samples Using Gas Chromatography/Mass Spectrometry (기체크로마토그래피/질량분석법을 이용한 생체시료 중 Polybrominated Biphenyls의 분석법)

  • Hong, Jongki;Baek, In-Girl;Kim, Hyub;Kim, Do-Gyun;Seo, Jung-Joo;Seo, Jong-Bok;Park, Hyun-Mee;Lee, Kang-Bong
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.666-674
    • /
    • 2000
  • The present study describes an analytical method for the determination of polybrominated biphenyls (PBBs) in biota samples by gas chromatography-mass spectrometry (GC/MS). PBBs are extracted twice from 20 g samples with mixture solvent 40mL acetone and 80mL hexane using ultrasonic agitation for 20 min. Lipids in extracts are degraded by concentrated sulfuric acid and then PBBs are purified with Florisil column. The purified extracts are analyzed by GC/MS-selected ion monitoring mode for the quantitation of PBBs in biota sample. The overall recovery yields of PBBs range between 77 and 111% under these experimental conditions.

  • PDF

Structural Analysis of the Cu-binding Site in the [Cu·dCMP·dCMP-H]1- Complex

  • Jung, Sang-Mi;Kim, Ho-Tae
    • Mass Spectrometry Letters
    • /
    • v.4 no.4
    • /
    • pp.67-70
    • /
    • 2013
  • The Cu-binding site in the $[Cu{\cdot}dCMP{\cdot}dCMP-H]^{1-}$ complex was investigated. The tandem mass (MS/MS) spectra of the [$[Cu{\cdot}dCMP{\cdot}dCMP-H]^{1-}$ parent ion showed $[dCMP{\cdot}Cu{\cdot}H_2PO_4+CONH]^{1-}$ fragment ions. Therefore, we propose that the Cu cation is simultaneously coordinated to the phosphate site and cytosine moiety in the stable geometry of the $[Cu{\cdot}dCMP{\cdot}dCMP-H]^{1-}$ complex. Three geometries for the complex were considered in an attempt to optimize the structure of the $[Cu{\cdot}dCMP{\cdot}dCMP-H]^{1-}$ complex. The ab initio calculations were performed at the $B3LYP/6-311G^{**}$ level.

Inspection of the Fragmentation Pathway for Thiamethoxam

  • Son, Sunwoong;Kim, Byungjoo;Ahn, Soenghee
    • Mass Spectrometry Letters
    • /
    • v.8 no.3
    • /
    • pp.65-68
    • /
    • 2017
  • Thiamethoxam is one of the main suspect in honeybee colony collapse disorder (CCD). Due to this reason, thiamethoxam including imidacloprid and clothianidin has been banned for two years in some Europe countries. The CCD phenomenon has also been reported in Korea. Regarding this issue and needs, a new project has started to develop the method for the quatitation of thiamethoxam using isotope dilution mass spectrometry (IDMS). In the process of optimization for the IDMS method with thiamethoxam and $thiamethoxam-d_3$, we observed that the fragment peaks did not correspond to the fragmentation pathway as published elsewhere. Here, we proposed a candidate fragmentation pathway. To validate the proposed fragmentation pathway, another isotope analogue, $thiamethoxam-d_4$, was introduced and the MS/MS spectra of both isotope analogues were compared. In addition, the MS/MS/MS spectra of thiamethoxam were inspected for more evidence of the candidate pathway. Those spectra indicated that the proposed fragmentation pathway could be used to assign the fragment peaks of thiamethoxam.

Possibilities of Liquid Chromatography Mass Spectrometry (LC-MS)-Based Metabolomics and Lipidomics in the Authentication of Meat Products: A Mini Review

  • Harlina, Putri Widyanti;Maritha, Vevi;Musfiroh, Ida;Huda, Syamsul;Sukri, Nandi;Muchtaridi, Muchtaridi
    • Food Science of Animal Resources
    • /
    • v.42 no.5
    • /
    • pp.744-761
    • /
    • 2022
  • The liquid chromatography mass spectrometry (LC-MS)-based metabolomic and lipidomic methodology has great sensitivity and can describe the fingerprint of metabolites and lipids in pork and beef. This approach is commonly used to identify and characterize small molecules such as metabolites and lipids, in meat products with high accuracy. Since the metabolites and lipids can be used as markers for many properties of a food, they can provide further evidence of the foods authenticity claim. Chromatography coupled to mass spectrometry is used to separate lipids and metabolites from meat samples. The research data usually is compared to lipid and metabolite databases and evaluated using multivariate statistics. LC-MS instruments directly connected to the metabolite and lipid databases software can be used to assess the authenticity of meat products. LC-MS has good selectivity and sensitivity for metabolomic and lipidomic analysis. This review highlighted the combination of metabolomics and lipidomics can be used as a reference for analyzing authentication meat products.

Development of Sensitive Analytical Method of Rhodanthpyrone A by a LC-MS/MS and its Application to Bioavailability Study in Rats

  • Kang, Bitna;Yoon, Jeong A;Song, Im-Sook;Han, Young Taek;Choi, Min-Koo
    • Mass Spectrometry Letters
    • /
    • v.10 no.3
    • /
    • pp.88-92
    • /
    • 2019
  • A sensitive analytical method of rhodanthpyrone A in rat plasma was developed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Rhodanthpyrone A and rhodanthpyrone B (internal standard) in rat plasma were extracted by a liquid-liquid extraction method with ethyl acetate. This extraction method gave results in high and reproducible extraction recovery in the range of 73.75-79.90% with no interfering peaks around the peak elution time of rhodanthpyrone A and B. The standard calibration curves for rhodanthpyrone A ranged from 0.5 to 2000 ng/mL were linear with $r^2$ > 0.994 and the inter- and intra-day accuracy and precision and the stability were within acceptance criteria. Using this validated analytical method, pharmacokinetics of rhodanthpyrone A following intravenous and oral administration of rhodanthpyrone A at doses of 2 mg/kg and 30 mg/kg, respectively, were investigated. Rhodanthpyrone A in rat plasma showed multi-exponential elimination pattern with high clearance and volume of distribution values. The absolute oral bioavailability of this compound was calculated as 3.7%. Collectively, the newly developed sensitive LC-MS/MS analytical method of rhodanthpyrone A could be successfully applied to investigate the pharmacokinetic properties of this compound and would be useful for the further studies on the efficacy, toxicity, and biopharmaceutics of rhodanthpyrone A.

A Comprehensive Identification of Synaptic Vesicle Proteins in Rat Brains by cRPLC/MS-MS and 2DE/MALDI-TOF-MS

  • Lee, Won-Kyu;Kim, Hye-Jung;Min, Hye-Ki;Kang, Un-Beom;Lee, Cheol-Ju;Lee, Sang-Won;Kim, Ick-Young;Lee, Seung-Taek;Kwon, Oh-Seung;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1499-1509
    • /
    • 2007
  • Proteomic analyses of synaptic vesicle fraction from rat brain have been performed for the better understanding of vesicle regulation and signal transmission. Two different approaches were applied to identify proteins in synaptic vesicle fraction. First, the isolated synaptic vesicle proteins were treated with trypsin, and the resulting peptides were analyzed using a high-pressure capillary reversed phase liquid chromatography/tandem mass spectrometry (cRPLC/MS/MS). Alternatively, proteins were separated by two-dimensional gel electrophoresis (2DE) and identified by matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF/MS). Total 18 and 52 proteins were identified from cRPLC/MS-MS and 2DE-MALDI-TOF-MS analysis, respectively. Among them only 2 proteins were identified by both methods. Of the proteins identified, 70% were soluble proteins and 30% were membrane proteins. They were categorized by their functions in vesicle trafficking and biogenesis, energy metabolism, signal transduction, transport and unknown functions. Among them, 27 proteins were not previously reported as synaptic proteins. The cellular functions of unknown proteins were estimated from the analysis of domain structure, expression profile and predicted interaction partners.

Informatics for protein identification by tandem mass spectrometry; Focused on two most-widely applied algorithms, Mascot and SEQUEST

  • Sohn, Chang-Ho;Jung, Jin-Woo;Kang, Gum-Yong;Kim, Kwang-Pyo
    • Bioinformatics and Biosystems
    • /
    • v.1 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Mass spectrometry (MS) is widely applied for high throughput proteomics analysis. When large-scale proteome analysis experiments are performed, it generates massive amount of data. To search these proteomics data against protein databases, fully automated database search algorithms, such as Mascot and SEQUEST are routinely employed. At present, it is critical to reduce false positives and false negatives during such analysis. In this review we have focused on aspects of automated protein identification using tandem mass spectrometry (MS/MS) spectra and validation of the protein identifications of two most common automated protein identification algorithms Mascot and SEQUEST.

  • PDF

Analysis of Lipids in Deciduous Teeth by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI MS)

  • Lee, Yujin;Seo, Eunji;Park, Tae-Min;Bae, Kwang-Hak;Cha, Sangwon
    • Mass Spectrometry Letters
    • /
    • v.8 no.4
    • /
    • pp.105-108
    • /
    • 2017
  • Recently, deciduous teeth have been proposed as a promising biomatrix for estimating internal and external chemical exposures of an individual from prenatal periods to early childhood. Therefore, detection of organic chemicals in teeth has received increasing attention. Organic materials in tooth matrix are mostly collagen type proteins, but lipids and other small organic chemicals are also present in the tooth matrix. In this study, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) was employed to obtain lipid fingerprints from deciduous teeth. Phospholipids and triacylglcerols (TAGs) from deciduous teeth were successfully detected by MALDI MS with 2,5-dihydroxybenzoic acid (DHB) or gold nanoparticle (AuNP) as a matrix.

MS-Based Technologies for the Study of Site-Specific Glycosylation

  • Kim, Unyong;Oh, Myung Jin;Lee, Jua;Hwang, Hee Yeon;An, Hyun Joo
    • Mass Spectrometry Letters
    • /
    • v.8 no.4
    • /
    • pp.69-78
    • /
    • 2017
  • Glycosylation, which is one of the most common post-translation modification (PTMs) of proteins, plays a variety of crucial roles in many cellular events and biotherapeutics. Recent advances have led to the development of various analytical methods employing a mass spectrometry for glycomic and glycoproteomic study. However, site-specific glycosylation analysis is still a relatively new area with high potential for technologies and method development. This review will cover current MS-based workflows and technologies for site-specific mapping of glycosylation ranging from glycopeptide preparation to MS analysis. Bioinformatic tools for comprehensive analysis of glycoprotein with high-throughput manner will be also included.