• Title/Summary/Keyword: MRI Images

Search Result 1,010, Processing Time 0.031 seconds

PSNR Appraisal of MRI Image (MRI 영상의 PSNR 평가)

  • Kang, Kwang-Soo;Lee, Jun-Haeng
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.4
    • /
    • pp.13-21
    • /
    • 2009
  • The Magnetic Resonance Imaging (MRI) systems consist of various parameters. Among them, the image quality can be arguably the most important part of the systems. As the other components in MRI systems have been developed and evolved, the MRI image quality has been advanced remarkably. And, the radiation imaging system is being converted from the Film to the digital method, which drives the computerization of many hospitals. The management of the tremendous radiation images becomes more critical. The data compression is used to store such large data in a network server. When the image files are compressed, the image quality degrades comparing to its original images. Even slight quality degradation of a medical image could cause an erroneous diagnosis, so the images must be handled carefully. This thesis studied the image assessment methods of comparing the quality of the compressed image to its original, and the quality of the original and the displayed images of the MRI systems via PSNR with actual medical images used in hospitals. As a result, no noticeable quality degradation was found comparing the compressed images with various digital compression methods and the original images. However, it was a different story comparing the original images and the displayed images on MRI monitors. Some noise or image distortion was visible using any regular CRT or LCD monitors were used while the special monitors designed for the MRI imaging and medical images displayed high definition images.

  • PDF

Evaluation of Combined Contrast Agent using N-(p-maleimidophenyl) Isocyanate Linker-mediated Synthesis for Simultaneous PET-MRI (동시 PET-MRI를 위한 N-(p-maleimidophenyl) isocyanate linker-매개 합성을 이용한 복합 조영제의 평가)

  • Lee, Gil-Jae;Lee, Hwun-Jae;Lee, Tae-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.2
    • /
    • pp.103-113
    • /
    • 2022
  • In this paper, a combined 18F-FDG(fluorodeoxyglucose) and MNP(magnetic nanoparticles) contrast agent was synthesized using N-(p-maleimidophenyl) isocyanate as the crosslinker for use in simultaneous PET-MRI scans. PET-MRI images were acquired and evaluated before and after injection of the combined contrast imaging agent (18F-FDG labeled MNP) from a glioma stem cell mouse model. After setting the region of interest (ROI) on each acquired image, the area of the lesion was calculated by segmentation. As a result, the PET image was larger than the MRI. In particular, the simultaneous PET-MRI images showed accurate lesions along with the surrounding soft tissue. The mean and standard deviation values were higher in the MRI images alone than in the PET images or the simultaneous PET-MRI images, regardless of whether the contrast agent was injected. In addition, the simultaneous PET-MRI image values were higher than for the PET images. For PSNR experiments, the original image was PET Image using 18F-FDG, MRI using MNPs, and MRI without contrast medium, and the target image was simultaneous PET-MRI image using 18F-FDG labeled MNPs contrast medium. As a result, all of them appeared significantly, suggesting that the 18F-FDG labeled MNPs contrast medium is useful. Future research is needed to develop an agent that can simultaneously diagnose and treat through SPECT-MRI imaging research that can use various nuclides.

Dynamic Contrast-Enhanced MRI of the Prostate: Can Auto-Generated Wash-in Color Map Be Useful in Detecting Focal Lesion Enhancement?

  • Yoon, Ji Min;Choi, Moon Hyung;Lee, Young Joon;Jung, Seung Eun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.220-227
    • /
    • 2019
  • Purpose: To evaluate the usefulness of wash-in color map in detecting early enhancement of prostate focal lesion compared to whole dynamic contrast-enhanced MRI (DEC MRI) images. Materials and Methods: This study engaged 50 prostate cancer patients who underwent multiparametric MRI and radical prostatectomy as subjects. An expert [R1] and a trainee [R2] independently evaluated early enhancement and recorded the time needed to review 1) a wash-in color map and 2) whole DCE MRI images. Results: The review of whole DCE images by R1 showed fair agreement with color map by R1, whole images by R2, and color map by R2 (weighted kappa values = 0.59, 0.44, and 0.58, respectively). Both readers took a significantly shorter time to review the color maps as compared to whole images (P < 0.001). Conclusion: A trainee could achieve better agreement with an expert when using wash-in color maps than when using whole DCE MRI images. Also, color maps took a significantly shorter evaluation time than whole images.

A Study on Abdomen MRI Scan Using Metronome (메트로놈을 이용한 복부 MRI 검사에 대한 연구)

  • Park, Ho-Sung;Kim, Jae-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1138-1143
    • /
    • 2020
  • MRI scans in the abdominal area are difficult to achieve optimal images due to artificial respiration. Among 45 patients (male:female = 30:15) who underwent abdominal MRI examination, a metronome-based examination method was studied for patients whose breathing is difficult and difficult to examine. The images examined without using a metronome were divided into group A, and the images examined using a metronome were divided into group B. Image quality improvement (30%) and inspection time (approximately 50 seconds) were reduced in images using metronome. During abdominal magnetic resonance imaging (ABD MRI), the images examined using a metronome had differences in quality and examination time compared to the unused images. It is more effective to use a metronome brace that controls the patient's respiratory rate during abdominal magnetic resonance imaging under respiratory induction in patients with difficulty in respiratory-gated.

CT and MRI image fusion reproducibility and dose assessment on Treatment planning system (치료계획시스템에서 전산화단층촬영과 자기공명영상의 영상융합 재현성 및 선량평가)

  • Ahn, Byeong Hyeok;Choi, Jae Hyeok;Hwang, Jae ung;Bak, Ji yeon;Lee, Du hyeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.33-41
    • /
    • 2017
  • Objectives: The aim of this study is to evaluate the reproducibility and usefulness of the images through the fusion of CT(Computed tomography) and MRI(Magnetic resonance imaging) using a self-manufactured phantom. We will also compare and analyze the target dose from acquired images. Materials and Methods: Using a self-manufactured phantom, CT images and MRI images are acquired by 1.5T and 3.0T of different magnetic fields. The reproducibility of the size and volume of the small holes present in the phantom is compared through the image from CT and 1.5T and 3.0T MRI, and dose changes are compared and analyzed on any target. Results: 13 small hole diameters were a maximum 31 mm and a minimum 27.54 mm in the CT scan and the were measured within an average of 29.28 mm 1 % compared to actual size. 1.5 T MRI images showed a maximum 31.65 mm and a minimum 24.3 mm, the average is 28.8 mm, which is within 1 %. 3.0T MRI images showed a maximum 30.2 mm and a minimum 27.92 mm, the average is 29.41 mm, which is within 1.3 %. The dose changes in the target were 95.9-102.1 % in CT images, 93.1-101.4 % in CT-1.5T MRI fusion images, and 96-102 % in CT-3.0T MRI fusion images. Conclusion: CT and MRI are applied with different algorithms for image acquisition. Also, since the organs of the human body have different densities, image distortion may occur during image acquisition. Because these inaccurate images description affects the volume range and dose of the target, accurate volume and location of the target can prevent unnecessary doses from being exposed and errors in treatment planning. Therefore, it should be applied to the treatment plan by taking advantage of the image display algorithm possessed by CT and MRI.

  • PDF

Reconstruction of Magnetic Resonance Phase Images using the Compressed Sensing Technique (압축 센싱 기법을 이용한 MRI 위상 영상의 재구성)

  • Lee, J.E.;Cho, M.H.;Lee, S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.464-471
    • /
    • 2010
  • Compressed sensing can be used to reduce scan time or to enhance spatial resolution in MRI. It is now recognized that compressed sensing works well in reconstructing magnitude images if the sampling mask and the sparsifying transform are well chosen. Phase images also play important roles in MRI particularly in chemical shift imaging and magnetic resonance electrical impedance tomography (MREIT). We reconstruct MRI phase images using the compressed sensing technique. Through computer simulation and real MRI experiments, we reconstructed phase images using the compressed sensing technique and we compared them with the ones reconstructed by conventional Fourier reconstruction technique. As compared to conventional Fourier reconstruction with the same number of phase encoding steps, compressed sensing shows better performance in terms of mean squared phase error and edge preservation. We expect compressed sensing can be used to reduce the scan time or to enhance spatial resolution of MREIT.

Nonuniformity Correction Scheme Based on 3-dimensional Visualization of MRI Images (MRI 영상의 3차원 가시화를 통한 영상 불균일성 보정 기법)

  • Kim, Hyoung-Jin;Seo, Kwang-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.948-958
    • /
    • 2010
  • Human body signals collected by the MRI system are very weak, such that they may be easily affected by either external noise or system instability while being imaged. Therefore, this paper analyzes the nonuniformity caused by a design of the RF receiving coil in a low-magnetic-field MRI system, and proposes an efficient method to improve the image uniformity. In this paper, a method for acquiring 3D bias volume data by using phantom data among various methods for correcting such nonuniformity in MRI image is proposed, such that it is possible to correct various-sized images. It is shown by simulations that images obtained by various imaging methods can be effectively corrected using single bias data.

On the Implementation of Articulatory Speech Simulator Using MRI (MRI를 이용한 조음모델시뮬레이터 구현에 관하여)

  • Jo, Cheol-Woo
    • Speech Sciences
    • /
    • v.2
    • /
    • pp.45-55
    • /
    • 1997
  • This paper describes the procedure of implementing an articulatory speech simulator, in order to model the human articulatory organs and to synthesize speech from this model after. Images required to construct the vocal tract model were obtained from MRI, they were then used to construct 2D and 3D vocal tract shapes. In this paper 3D vocal tract shapes were constructed by spatially concatenating and interpolating sectional MRI images. 2D vocal tract shapes were constructed and analyzed automatically into a digital filter model. Following this speech sounds corresponding to the model were then synthesized from the filter. All procedures in this study were using MATLAB.

  • PDF

Morphology Operations on CUDA To Remove Skull on MRI Images

  • Izmantoko, Yonny S.;Choi, Heung-Kook
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.205-208
    • /
    • 2012
  • Nowadays GPU (Graphic Process Unit) is not only used to show and render some images, but also for another computation. In this paper, we tried to use GPU to do some morphology operations to remove skull from axial MRI images. This skull removing process is an important step in brain segmentation because we would like to work with the brain only, without any skull on it. The result shows that simple morphology operations to remove skull has been successfully applied on MRI images, but there are still many parts that can be develop to get better images.

  • PDF

Algorithm for Fabricating 3D Breast Implants by Using MRI and 3D Scan Data (MRI와 3D 스캔 데이터를 이용한 3D 프린팅 유방 인공보형물의 제작 알고리즘)

  • Jeong, Young Jin;Choi, Dong Hun;Kim, Ku-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1385-1395
    • /
    • 2019
  • In this paper, we propose a method to fabricate a patient-specific breast implant using MRI images and 3D scan data. Existing breast implants for breast reconstruction surgery are primarily fabricated products for shaping, and among the limited types of implants, products similar to the patient's breast have been used. In fact, the larger the difference between the shape of the breast and the implant, the more frequent the postoperative side effects and the lower the satisfaction. Previous researches on the fabrication of patient-specific breast implants have used limited information based on only MRI images or on only 3D scan data. In this paper, we propose an algorithm for the fabrication of patient-specific breast implants that combines MRI images with 3D scan data, considering anatomical suitability for external shape, volume, and pectoral muscle. Experimental results show that we can produce precise breast implants using the proposed algorithm.