• Title/Summary/Keyword: MRI(magnetic resonance imaging)

Search Result 2,009, Processing Time 0.026 seconds

Magnetic Resonance Imaging Meets Fiber Optics: a Brief Investigation of Multimodal Studies on Fiber Optics-Based Diagnostic / Therapeutic Techniques and Magnetic Resonance Imaging

  • Choi, Jong-ryul;Oh, Sung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.218-228
    • /
    • 2021
  • Due to their high degree of freedom to transfer and acquire light, fiber optics can be used in the presence of strong magnetic fields. Hence, optical sensing and imaging based on fiber optics can be integrated with magnetic resonance imaging (MRI) diagnostic systems to acquire valuable information on biological tissues and organs based on a magnetic field. In this article, we explored the combination of MRI and optical sensing/imaging techniques by classifying them into the following topics: 1) functional near-infrared spectroscopy with functional MRI for brain studies and brain disease diagnoses, 2) integration of fiber-optic molecular imaging and optogenetic stimulation with MRI, and 3) optical therapeutic applications with an MRI guidance system. Through these investigations, we believe that a combination of MRI and optical sensing/imaging techniques can be employed as both research methods for multidisciplinary studies and clinical diagnostic/therapeutic devices.

Retrospective Electrocardiography-Gated Real-Time Cardiac Cine MRI at 3T: Comparison with Conventional Segmented Cine MRI

  • Chen Cui;Gang Yin;Minjie Lu;Xiuyu Chen;Sainan Cheng;Lu Li;Weipeng Yan;Yanyan Song;Sanjay Prasad;Yan Zhang;Shihua Zhao
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.114-125
    • /
    • 2019
  • Objective: Segmented cardiac cine magnetic resonance imaging (MRI) is the gold standard for cardiac ventricular volumetric assessment. In patients with difficulty in breath-holding or arrhythmia, this technique may generate images with inadequate quality for diagnosis. Real-time cardiac cine MRI has been developed to address this limitation. We aimed to assess the performance of retrospective electrocardiography-gated real-time cine MRI at 3T for left ventricular (LV) volume and mass measurement. Materials and Methods: Fifty-one patients were consecutively enrolled. A series of short-axis cine images covering the entire left ventricle using both segmented and real-time balanced steady-state free precession cardiac cine MRI were obtained. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and LV mass were measured. The agreement and correlation of the parameters were assessed. Additionally, image quality was evaluated using European CMR Registry (Euro-CMR) score and structure visibility rating. Results: In patients without difficulty in breath-holding or arrhythmia, no significant difference was found in Euro-CMR score between the two techniques (0.3 ± 0.7 vs. 0.3 ± 0.5, p > 0.05). Good agreements and correlations were found between the techniques for measuring EDV, ESV, EF, SV, and LV mass. In patients with difficulty in breath-holding or arrhythmia, segmented cine MRI had a significant higher Euro-CMR score (2.3 ± 1.2 vs. 0.4 ± 0.5, p < 0.001). Conclusion: Real-time cine MRI at 3T allowed the assessment of LV volume with high accuracy and showed a significantly better image quality compared to that of segmented cine MRI in patients with difficulty in breath-holding and arrhythmia.

Review of Recent Advancement of Ultra High Field Magnetic Resonance Imaging: from Anatomy to Tractography

  • Cho, Zang-Hee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.3
    • /
    • pp.141-151
    • /
    • 2016
  • Purpose: Advances of magnetic resonance imaging (MRI), especially that of the Ultra-High Field (UHF) MRI will be reviewed. Materials and Methods: Diffusion MRI data was obtained from a healthy adult young male of age 30 using a 7.0T research MRI scanner (Magnetom, Siemens) with 40 mT/m maximum gradient field. The specific imaging parameters used for the data acquisition were a single shot DW echo planar imaging. Results: Three areas of the imaging experiments are focused on for the study, namely the anatomy, angiography, and tractography. Conclusion: It is envisioned that, in near future, there will be more 7.0T MRIs for brain research and explosive clinical application research will also be developed, for example in the area of connectomics in neuroscience and clinical neurology and neurosurgery.

Current Status of Magnetic Resonance Imaging in Patients with Malignant Uterine Neoplasms: A Review

  • Yu-Ting Huang;Yen-Ling Huang;Koon-Kwan Ng;Gigin Lin
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.18-33
    • /
    • 2019
  • In this study, we summarize the clinical role of magnetic resonance imaging (MRI) in the diagnosis of patients with malignant uterine neoplasms, including leiomyosarcoma, endometrial stromal sarcoma, adenosarcoma, uterine carcinosarcoma, and endometrial cancer, with emphasis on the challenges and disadvantages. MRI plays an essential role in patients with uterine malignancy, for the purpose of tumor detection, primary staging, and treatment planning. MRI has advanced in scope beyond the visualization of the many aspects of anatomical structures, including diffusion-weighted imaging, dynamic contrast enhancement-MRI, and magnetic resonance spectroscopy. Emerging technologies coupled with the use of artificial intelligence in MRI are expected to lead to progressive improvement in case management of malignant uterine neoplasms.

Breast Magnetic Resonance Image (MRI) Guideline: Breast Imaging Study Group of Korean Society of Magnetic Resonance in Medicine Recommendations

  • Choi, Seon Hyeong;Kang, Bong Joo;Jung, Seung Eun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.4
    • /
    • pp.205-208
    • /
    • 2018
  • The purpose of this study is to establish an appropriate protocol for breast magnetic resonance imaging (MRI) in the discipline of image quality standards. The intention of the protocol is to increase effectiveness of medical image information exchange involved in construction, activation, and exchange of clinical information for healthcare.

Contrast-Enhanced Cine Magnetic Resonance Imaging in Myocardial Infarction

  • 최병욱;최규옥;김영진;정남식;최동훈
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.43-43
    • /
    • 2003
  • Viable myocardium can be distinguished from the infarcted myocardium by contrast-enhanced magnetic resonance imaging (ceMRI). In this study, contrast-enhancement with cine magnetic resonance imaging (cecineMRI) was performed for direct correlation of transmural extent of hyperenhancement and that of contractility.

  • PDF

Contrast-Enhanced Cine Magnetic Resonance Imaging in Myocardial Infarction

  • 최병욱;최규옥;김영진;정남식;최동훈
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.89-90
    • /
    • 2003
  • Viable myocardium can be distinguished from the infarcted myocardium by contrast-enhanced magnetic resonance imaging (ceMRI). In this study, contrast-enhancement with cine magnetic resonance imaging (cecineMRI) was performed for direct correlation of transmural extent of hyperenhancement and that of contractility.

  • PDF

Fast MRI in Acute Ischemic Stroke: Applications of MRI Acceleration Techniques for MR-Based Comprehensive Stroke Imaging

  • You, Sung-Hye;Kim, Byungjun;Kim, Bo Kyu;Park, Sang Eun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.2
    • /
    • pp.81-92
    • /
    • 2021
  • The role of neuroimaging in patients with acute ischemic stroke has been gradually increasing. The ultimate goal of stroke imaging is to make a streamlined imaging workflow for safe and efficient treatment based on optimized patient selection. In the era of multimodal comprehensive imaging in strokes, imaging based on computed tomography (CT) has been preferred for use in acute ischemic stroke, because, despite the unique strengths of magnetic resonance imaging (MRI), MRI has a longer scan duration than does CT-based imaging. However, recent improvements, such as multicoil technology and novel MRI acceleration techniques, including parallel imaging, simultaneous multi-section imaging, and compressed sensing, highlight the potential of comprehensive MR-based imaging for strokes. In this review, we discuss the role of stroke imaging in acute ischemic stroke management, as well as the strengths and limitations of MR-based imaging. Given these concepts, we review the current MR acceleration techniques that could be applied to stroke imaging and provide an overview of the previous research on each essential sequence: diffusion-weighted imaging, gradient-echo, fluid-attenuated inversion recovery, contrast-enhanced MR angiography, and MR perfusion imaging.

Interference Issuses of Radio Frequency Identification Devices in Magnetic Resonance Imaging Systems and Computed Tomography Scan

  • Periyasamy, M.;Dhanasekaran, R.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.295-301
    • /
    • 2015
  • We evaluated certain issues related to magnetic resonance imaging (MRI) coupled with the use of active 2.5 GHz radio frequency identification (RFID) tags for patient identification using low field (0.3 T) MRI and computed tomography (CT) scans. We also investigated the performance of the RFID reader located outside the MRI room by considering several factors. A total of ten active RFID tags were exposed to several MRI sequences and X-rays of CT scan. We found that only card type active RFID tags are suitable for patient identification purpose in MRI environment and both wristbands as well as card tags were suitable for the same in CT environment. Severe artifacts were found in the captured MRI and CT images when the area of the imaging was in proximity to the tags. No external factors affected the performance of active RFID reader stationed outside the MRI scan room.

Magnetic Resonance Imaging in Thorax (흉부의 자기공명영상)

  • Choi, Byoung Wook
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.6
    • /
    • pp.571-584
    • /
    • 2004
  • Magnetic Resonance Imaging (MRI) is one of the most advanced imaging techniques in clinical and research medicine. However, clinical application of MRI to the lung or thorax has been limited due to various drawbacks. Low signal intensity of the lung and cardiac and respiratory movements are the most serious problems with MRI in thorax. Nevertheless, MRI is superior to CT in some selected patients with thoracic diseases. The role of clinical MRI in thoracic disease has been widened with improvement of MR equipments and development of new pulse sequences. Otherwise, functional assessment of lung by MRI has been studied for the last decade. These include perfusion MRI with or without contrast enhancement and ventilation MRI with oxygen-enhancement or hyperpolarized noble gas, $^3He$ and $^{129}Xe$.