• Title/Summary/Keyword: MRF buildings

Search Result 15, Processing Time 0.027 seconds

Effects of numerical modeling simplification on seismic design of buildings

  • Raheem, Shehata E Abdel;Omar, Mohamed;Zaher, Ahmed K Abdel;Taha, Ahmed M
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.731-753
    • /
    • 2018
  • The recent seismic events have led to concerns on safety and vulnerability of Reinforced Concrete Moment Resisting Frame "RC-MRF" buildings. The seismic design demands are greatly dependent on the computational tools, the inherent assumptions and approximations introduced in the modeling process. Thus, it is essential to assess the relative importance of implementing different modeling approaches and investigate the computed response sensitivity to the corresponding modeling assumptions. Many parameters and assumptions are to be justified for generation effective and accurate structural models of RC-MRF buildings to simulate the lateral response and evaluate seismic design demands. So, the present study aims to develop reliable finite element model through many refinements in modeling the various structural components. The effect of finite element modeling assumptions, analysis methods and code provisions on seismic response demands for the structural design of RC-MRF buildings are investigated. where, a series of three-dimensional finite element models were created to study various approaches to quantitatively improve the accuracy of FE models of symmetric buildings located in active seismic zones. It is shown from results of the comparative analyses that the use of a calibrated frame model which was made up of line elements featuring rigid offsets manages to provide estimates that match best with estimates obtained from a much more rigorous modeling approach involving the use of shell elements.

Influence of high axial compression ratios in RC columns on the seismic response of MRF buildings

  • Sergio Villar-Salinas;Sebastian Pacheco;Julian Carrillo;Francisco Lopez-Almansa
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.51-70
    • /
    • 2024
  • Poorly designed reinforced concrete (RC) columns of actual moment-resisting frame (MRF) buildings can undergo Axial Compression Ratios (ACR) so high as their demand exceeds their capacity, even for serviceability gravity load combinations, this lack commonly leads to insufficient seismic strength. Nonetheless, many seismic design codes do not specify limits for ACR. The main contribution of this research is to investigate the need to limit the ACR in seismic design. For this purpose, three prototype 6 and 11-story RC MRF buildings are analyzed in this paper, these buildings have columns undergoing excessive ACR, according to the limits prescribed by standards. To better that situation, three types of alterations are performed: retrofitting the abovementioned overloaded columns by steel jacketing, increasing the concrete strength, and reducing the number of stories. Several finite element analyses are conducted using the well-known software SAP2000 and the results are used for further calculations. Code-type and pushover analyses are performed on the original and retrofitted buildings, the suitability of the other modified buildings is checked by code-type analyses only. The obtained results suggest that ACR is a rather reliable indicator of the final building strength, hence, apparently, limiting the ACR in the standards (for early stages of design) might avoid unnecessary verifications.

Earthquake Response Analysis of Ordinary Moment Resisting Steel Frames (일반 모멘트 저항 철골조의 지진 응답 해석)

  • Yoon, Myung-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.4 no.1
    • /
    • pp.36-45
    • /
    • 2004
  • Allowable stress design method have been most widely used in steel structure in Korea. Recently, not only high-rise buildings but also medium or low-rise buildings were designed as steel structure. Most of low-rise steel buildings are designed as ordinary moment resisting frames(MRF). But MRFs don't have any lateral force resisting devices such as bracing in braced frames. This study focuses mainly on nonlinear seismic response analyses of small scale steel frames which will be used later as specimens for the evaluation of MRF's seismic performances. The main parameters of analyses are arrangement of column axis, $P-{\Delta}$ effect, acceleration factor etc. The object of this paper is to estimate the seismic performances of MRFs, which are mostly designed in Korea, through the results of response analyses.

  • PDF

Seismic retrofitting of steel moment-resisting frames (SMRFs) using steel pipe dampers

  • Ali Mohammad Rousta
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • The use of steel pipe dampers (SPD) as fuses or interchangeable elements in the steel moment-resisting frames (MRF) is one of the newest methods for improving seismic performance. In the present study, the performance of steel pipe dampers in MRF has been investigated. Evaluation of MRF with and without SPD models were performed using the finite element method by ABAQUS. For validation, an MRF and MRF with steel pipe dampers were modeled that had been experimentally tested and reported in previous experimental research and a good agreement was observed. The behavior of these dampers in frames of 3, 6, and 9 stories was studied by modeling the damper directly. Nonlinear time history dynamic analysis was used. It was observed that by increasing the number of stories in the buildings, steel pipe dampers should be used to perform properly against earthquakes. The installation of steel pipe dampers in steel moment-resisting frames shows that the drift ratio between the floors is reduced and the seismic performance of these frames is improved.

Improved seismic performance of steel moment frames using rotational friction dampers

  • Ali Banazadeh;Ahmad Maleki;Mohammad Ali Lotfollahi Yaghin
    • Earthquakes and Structures
    • /
    • v.25 no.4
    • /
    • pp.223-234
    • /
    • 2023
  • The use of displacement-dependent rotational friction dampers (RFD) as fuses or interchangeable elements in the moment-resisting frames (MRF) is one of the newest methods for improving seismic performance. In the present study, the performance of rotational friction dampers in MRF has been investigated. Evaluation of MRF with and without RFD models was performed using the finite element method by ABAQUS. For validation, an MRF and MRF with rotational friction dampers were modeled that had been experimentally tested and reported in previous experimental research and a good agreement was observed. The behavior of these dampers in frames of 3-, 6-, and 9-story was studied by modeling the damper directly. Nonlinear time history dynamic analysis was used. It was observed that by increasing the number of stories in the buildings, rotational friction dampers should be used to perform properly against earthquakes. The installation of rotational friction dampers in steel moment-resisting frames shows that the drift ratio between the floors is reduced and the seismic performance of these frames is improved.

Earthquake Response of Mid-rise to High-rise Buildings with Friction Dampers

  • Kaur, Naveet;Matsagar, V.A.;Nagpal, A.K.
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.311-332
    • /
    • 2012
  • Earthquake response of mid-rise to high-rise buildings provided with friction dampers is investigated. The steel buildings are modelled as shear-type structures and the investigation involved modelling of the structures of varying heights ranging from five storeys to twenty storeys, in steps of five storeys, subjected to real earthquake ground motions. Three basic types of structures considered in the study are: moment resisting frame (MRF), braced frame (BF), and friction damper frame (FDF). Mathematical modelling of the friction dampers involved simulation of the two distinct phases namely, the stick phase and the slip phase. Dynamic time history analyses are carried out to study the variation of the top floor acceleration, top floor displacement, storey shear, and base-shear. Further, energy plots are obtained to investigate the energy dissipation by the friction dampers. It is seen that substantial earthquake response reduction is achieved with the provision of the friction dampers in the mid-rise and high-rise buildings. The provision of the friction dampers always reduces the base-shear. It is also seen from the fast Fourier transform (FFT) of the top floor acceleration that there is substantial reduction in the peak response; however, the higher frequency content in the response has increased. For the structures considered, the top floor displacements are lesser in the FDF than in the MRF; however, the top floor displacements are marginally larger in the FDF than in the BF.

Performance Evaluation of Steel Moment Frame Buildings with Different Response Modification Factors (반응수정계수의 영향에 따른 철골조 빌딩의 내진 성능 평가)

  • Lee, Ki-Hak
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.201-208
    • /
    • 2006
  • This study lotuses on the seismic behavior of 3-, 9-, and 20-story steel moment resisting frame (MRF) structures designed in accordance with the 2000 International Building Code using different Response Modification factors (R factors) 8, 9, 10, 11, and 12. For a detailed case study, 30 different structures were evaluated for twenty ground motions representing the hazard level which is equal to a 2% probability exceeding in 50 years (2% in 50 years). The results showed that the current R factors provide conservative designs for the 3- and 9-story buildings for the Collapse Prevention performance objective. However, the 20-story buildings designed without using the minimum requirement of spectral acceleration CS prescribed in the IBC 2000 did not satisfy the seismic performance for Collapse Prevention performance.

  • PDF

Seismic Performance Evaluation of the Low-Rise Buildings with Different Seismic Retrofit Procedures (구조물 내진보강법에 따른 저층 건축물의 내진성능평가)

  • Song, Min Ah;Lee, Sicheol;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.553-560
    • /
    • 2016
  • After an earthquake occurred in the Gyeongju, 2016, many low-story buildings have been questioned in terms of the seismic performance since mostly they have been exempted from the seismic design requirement since 1988. In this study, a 3-story moment resisting frame (MRF) building was analyzed and evaluated the seismic performance. Due to the insufficient seismic performance required for the seismic performance levels, three different seismic retrofit schemes were proposed and their seismic performances were re-evaluated. While steel brace and open shear wall retrofit systems mainly focused on the strength retrofit, the VES damper retrofit system is mainly to enhance the energy dissipation capacity of the system and resultes in the increased ductility. The original building and 3 retrofitted buildings were evaluated using the nonlinear static and nonlinear dynamic analyses and suggestions were proposed. Through the analysis of nonlinear time history and push-over using MIDAS/Gen program, damages of the building in terms of top story and average story drift and effect of reinforcement were analyzed.

Assessment of Post-Earthquake Fire Behavior of a Steel MRF Building in a Low Seismic Region

  • Chicchi, Rachel;Varma, Amit
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1470-1481
    • /
    • 2018
  • Building-level response to post-earthquake fire hazards in steel buildings has been assessed using primarily two-dimensional analyses of the lateral force resisting system. This approach may not adequately consider potential vulnerabilities in the gravity framing system. For this reason, three-dimensional (3D) finite element models of a 10-story case study building with perimeter moment resisting frames were developed to analyze post-earthquake fire events and better understand building response. Earthquakes are simulated using ground motion time histories, while Eurocode parametric time-temperature curves are used to represent compartment fires. Incremental dynamic analysis and incremental fire analysis procedures capture a range of hazard intensities. Findings show that the structural response due to earthquake and fire hazards are somewhat decoupled from one another. Regardless of the level of plastic hinging present in the moment framing system due to a seismic event, gravity column failure is the initiating failure mode in a fire event.

Evaluation of Response Modification Factors for Steel Moment Frame Buildings Subjected to Seismic Loads (지진 하중을 받는 철골 모멘트 골조 빌딩에 대한 반응수정계수의 평가)

  • Lee, Kihak;Woo, Sungwoo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.585-596
    • /
    • 2006
  • This study focuses on the seismic behavior of 3-, 9-, and 20-story steel moment resisting frame (MRF) structures designed in accordance with the 2000 International Building Code using different Response Modification factors (R factors), i.e., 8, 9, 10, 11, and 12. For a detailed case study, 30 different structures were evaluated for 20 ground motions representing the hazard level, which is equal to a 2% probability in 50 years (2% in 50 years). The results showed that the current R factors provide conservative designs for the 3- and 9-story buildings for the Collapse Prevention performance objective. the 20-story buildings, which were designed without using the minimum requirement of spectral acceleration CS prescribed in IBC 2000, did not satisfy the seismic performance for Collapse Prevention performance.