DOI QR코드

DOI QR Code

Seismic retrofitting of steel moment-resisting frames (SMRFs) using steel pipe dampers

  • Received : 2023.02.07
  • Accepted : 2023.05.22
  • Published : 2023.07.10

Abstract

The use of steel pipe dampers (SPD) as fuses or interchangeable elements in the steel moment-resisting frames (MRF) is one of the newest methods for improving seismic performance. In the present study, the performance of steel pipe dampers in MRF has been investigated. Evaluation of MRF with and without SPD models were performed using the finite element method by ABAQUS. For validation, an MRF and MRF with steel pipe dampers were modeled that had been experimentally tested and reported in previous experimental research and a good agreement was observed. The behavior of these dampers in frames of 3, 6, and 9 stories was studied by modeling the damper directly. Nonlinear time history dynamic analysis was used. It was observed that by increasing the number of stories in the buildings, steel pipe dampers should be used to perform properly against earthquakes. The installation of steel pipe dampers in steel moment-resisting frames shows that the drift ratio between the floors is reduced and the seismic performance of these frames is improved.

Keywords

References

  1. ABAQUS-6.14 (2014), Standard User's Manual, Hibbitt, Karlsson and Sorensen, Inc. 
  2. Abdollahzadeh, G. and Banihashemia, M. (2013), "Response modification factor of dual moment-resistant frame with buckling restrained brace (BRB)", Steel Compos. Struct., 14(6), 621-636. https://doi.org/10.12989/scs.2013.14.6.621. 
  3. Aghlara, R., Tahir, M.M. and Adnan, A.B. (2018), "Experimental study of Pipe-Fuse Damper for passive energy dissipation in structures", J. Constr. Steel Res., 148, 351-360. https://doi.org/10.1016/j.jcsr.2018.06.004. 
  4. Ahmadie Amiri, H., Najafabadi, E.P. and Estekanchi, H.E. (2018), "Experimental and analytical study of Block Slit Damper", J. Constr. Steel Res., 141, 167-178. https://doi.org/10.1016/j.jcsr.2017.11.006. 
  5. AISC (2007), Steel Design Guide 20, Steel Plate Shear Walls, Chicago, IL. 
  6. AISC 341-16 (2016), AISC Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-16, USA. 
  7. Andalib, Z., Kafi, M.A., Kheyroddin, A. and Bazzaz, M. (2014), "Experimental investigation of the ductility and performance of steel rings constructed from plates", J. Constr. Steel Res., 103, 77-88. https://doi.org/10.1016/j.jcsr.2014.07.016. 
  8. ASCE7-10 (2010), Minimum Design Loads for Buildings and Other Structures, Standards, American Society of Civil Engineers, Reston, VA. 
  9. ATC-40 (1996). 
  10. Batterbee, D.C. and Sims, N.D. (2005), "Vibration isolation with smart fluid dampers: a benchmarking study", Smart Struct. Syst., 1(3), 235-256. https://doi.org/10.12989/sss.2005.1.3.235. 
  11. Beiraghi, H. (2019), "Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls", Struct. Eng. Mech., 72(4), 443-454. https://doi.org/10.12989/sem.2019.72.4.443. 
  12. Bhaskararao, A.V. and Jangid, R.S. (2007), "Optimum viscous damper for connecting adjacent SDOF structures for harmonic and stationary white-noise random excitations", Earthq. Eng. Struct. Dyn., 36(4), 563-571. https://doi.org/10.1002/EQE.636. 
  13. Borhan, S., Tajammolian, H. and Yazdian, M. (2021), "Evaluation of seismic performance of rotational-friction slip dampers in near-field and far-filed earthquakes", Earthq. Struct., 21(2), 147-159. https://doi.org/10.12989/eas.2021.21.2.147. 
  14. Chan, R.W.K. and Albermani, F. (2008), "Experimental study of steel slit damper for passive energy dissipation", Eng. Struct., 30(4), 1058-1066. https://doi.org/10.1016/j.engstruct.2007.07.005. 
  15. Chen, Z., Dai, Z., Huang, Y. and Bian, G. (2013), "Numerical simulation of large deformation in shear panel dampers using smoothed particle hydrodynamics", Eng. Struct., 48, 245-254. https://doi.org/10.1016/j.engstruct.2012.09.008. 
  16. Cheraghi, A. and Zahrai, S.M. (2016), "Innovative multi-level control with concentric pipes along brace to reduce seismic response of steel frames", J. Constr. Steel Res., 127, 120-135. https://doi.org/10.1016/j.jcsr.2016.07.024. 
  17. Choi, I.R. and Park, H.G. (2008), "Ductility and energy dissipation capacity of shear-dominated steel plate walls", J. Struct. Eng., 134(9), 1495-1507. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:9(1495). 
  18. Chou, C.C. and Chen, P.J. (2009), "Compressive behavior of central gusset plate connections for a buckling-restrained braced frame", J. Constr. Steel Res., 65(5), 1138-1148. https://doi.org/10.1016/j.jcsr.2008.11.004. 
  19. Chou, C.C. and Chen, S.Y. (2010), "Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces", Eng. Struct., 32(8), 2108-2121. https://doi.org/10.1016/J.engstruct.2010.03.014. 
  20. Chou, C.C., Wu, T.H., Beato, A.R.O., Chung, P.T. and Chen, Y.C. (2016), "Seismic design and tests of a full-scale one-story onebay steel frame with a dual-core self-centering brace", Eng. Struct., 111, 435-450. https://doi.org/10.1016/j.engstruct.2015.12.007. 
  21. Christopoulos, C., Tremblay, R., Kim, H.J. and Lacerte, M. (2008), "Self-centering energy dissipative bracing system for the seismic resistance of structures: development and validation", J. Struct. Eng., 134(1), 96-107. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(96). 
  22. Date, V.A. and Jangid, R.S. (2001), "Seismic response of torsionally coupled structures with active control device", J. Struct. Control, 8(1), 1-15. https://doi.org/10.1002/STC.4300080101. 
  23. Duan, Y., Ni, Y.Q., Zhang, H., Spencer, B.F., Ko, J.M. and Dong, S. (2019), "Design formulas for vibration control of sagged cables using passive MR dampers", Smart Struct. Syst., 23(6), 537-551. https://doi.org/10.12989/sss.2019.23.6.537. 
  24. Eldin, M.N., Kim, J. and Kim, J. (2018), "Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos. Struct., 27(5), 633-646. https://doi.org/10.12989/scs.2018.27.5.633. 
  25. Fan, X., Xu, L. and Li, Z. (2019), "Seismic performance evaluation of steel frames with pre-pressed spring self-centering braces", J. Constr. Steel Res., 162, 105761. https://doi.org/10.1016/j.jcsr.2019.105761. 
  26. Farghaly, A.A. (2015), "Seismic analysis of 3-D two adjacent buildings connected by viscous dampers with effect of underneath different soil kinds", Smart Struct. Syst., 15(5), 1293-1309. https://doi.org/10.12989/sss.2015.15.5.1293. 
  27. FEMA 273-274, Federal Emergency Management Agency, NEHRP Guidelines and Commentary for the Seismic Rehabilitation of Buildings, Washington, DC. 
  28. FEMA 356 (2000), Federal Emergency Management Agency, Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Washington, DC, USA. 
  29. FEMA P695 (2009), Quantification of Building Seismic Performance Factors, Technical Report P695, Applied Technology Council for the Federal Emergency Management Agency, Washington, D.C. 
  30. Firouzianhaij, A., Gorji Azandariani, M., Usefi, N. and Samali, B. (2022), "Performance of baseplate connections in CFS storage rack systems: An experimental, numerical and theoretical study", J. Constr. Steel Res., 196, 107421. https://doi.org/10.1016/j.jcsr.2022.107421. 
  31. Gholami, M., Zare, E., Gorji Azandariani, M. and Moradifard, R. (2021), "Seismic behavior of dual buckling-restrained steel braced frame with eccentric configuration and post-tensioned frame system", Soil Dyn. Earthq. Eng., 151, 106977. https://doi.org/10.1016/j.soildyn.2021.106977. 
  32. Gorji Azandariani, A., Gholhaki, M. and Gorji Azandariani, M. (2022a), "Assessment of damage index and seismic performance of steel plate shear wall (SPSW) system", J. Constr. Steel Res., 191, 107157. https://doi.org/10.1016/j.jcsr.2022.107157. 
  33. Gorji Azandariani, M. and Gholami, M. (2022), "Seismic fragility investigation of hybrid structures BRBF with eccentricconfiguration and self-centering frame", J. Constr. Steel Res., 196, 107300. https://doi.org/https://doi.org/10.1016/j.jcsr.2022.107300. 
  34. Gorji Azandariani, M., Abdolmaleki, H. and Gorji Azandariani, A. (2020a), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin Wall. Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751. 
  35. Gorji Azandariani, M., Ghanbari-Ghazijahani, T., Mohebkhah, A. and Classen, M. (2021a), "Concrete- and timber-filled tubes under axial compression-Numerical and theoretical study", J. Build. Eng., 44, 103231. https://doi.org/10.1016/j.jobe.2021.103231. 
  36. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Gorji Azandariani, A. (2022b), "Assessment of cyclic behavior and performance of hybrid linked-column steel plate shear wall system", J. Build. Eng., 58, 104963. https://doi.org/10.1016/j.jobe.2022.104963. 
  37. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Zirakian, T. (2021b), "Study of effects of beam-column connection and column rigidity on the performance of SPSW system", J. Build. Eng., 33, 101821. https://doi.org/10.1016/j.jobe.2020.101821. 
  38. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A., Zirakian, T., Khan, A., Abdolmaleki, H. and Shojaeifar, H. (2021c), "Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)", Steel Compos. Struct., 39(1), 109-123. https://doi.org/10.12989/scs.2021.39.1.109. 
  39. Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020b), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145. 
  40. Gorji Azandariani, M., Kafi, M.A. and Gholhaki, M. (2021d), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844. 
  41. Gorji Azandariani, M., Rousta, A.M., Mohammadi, M., Rashidi, M. and Abdolmaleki, H. (2021e), "Numerical and analytical study of ultimate capacity of steel plate shear walls with partial plate-column connection (SPSW-PC)", Struct., 33, 3066-3080. https://doi.org/10.1016/j.istruc.2021.06.046. 
  42. Gorji Azandariani, M., Rousta, A.M., Usefvand, E., Abdolmaleki, H. and Gorji Azandariani, A. (2021f), "Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings", Struct., 29, 534-548. https://doi.org/10.1016/j.istruc.2020.11.041. 
  43. Graciano, C., Teixeira, P. and Martinez, G. (2019), "Yielding shear resistance of expanded metal panels", Thin Wall. Struct., 138, 286-292. https://doi.org/10.1016/j.tws.2019.02.024. 
  44. Gray, M.G., Christopoulos, C. and Packer, J.A. (2014), "Cast steel yielding brace system for concentrically braced frames: Concept development and experimental validations", J. Struct. Eng., 140(4), 04013095. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000910. 
  45. Haider, S.M.B. and Lee, D. (2021), "A review on BRB and SCBRB members in building structures", Struct. Eng. Mech., 80(5), 609. https://doi.org/10.12989/sem.2021.80.5.609. 
  46. Hassanien Serror, M., Adel Diab, R. and Ahmed Mourad, S. (2014), "Seismic force reduction factor for steel moment resisting frames with supplemental viscous dampers", Earthq. Struct., 7(6), 1171-1186. https://doi.org/10.12989/eas.2014.7.6.1171. 
  47. IS2800 (2014), Tehran, Iran. 
  48. Jangid, R.S. (2004), "Response of SDOF system to non-stationary earthquake excitation", Earthq. Eng. Struct. Dyn., 33(15), 1417-1428. https://doi.org/10.1002/EQE.409. 
  49. Kalali, H., Hajsadeghi, M., Zirakian, T. and Alaee, F.J. (2015), "Hysteretic performance of SPSWs with trapezoidally horizontal corrugated web-plates", Steel Compos. Struct., 19(2), 277-292. https://doi.org/10.12989/scs.2015.19.2.277. 
  50. Khorami, M., Khorami, M., Motahar, H., Alvansazyazdi, M., Shariati, M., Jalali, A. and Tahir, M.M. (2017), "Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis", Struct. Eng. Mech., 63(2), 259-268. https://doi.org/10.12989/sem.2017.63.2.259. 
  51. Kori, J.G. and Jangid, R.S. (2008), "Semi-active friction dampers for seismic control of structures", Smart Struct. Syst., 4(4), 493-515. https://doi.org/10.12989/sss.2008.4.4.493. 
  52. Lee, J. and Kim, J. (2015), "Seismic performance evaluation of moment frames with slit-friction hybrid dampers", Earthq. Struct., 9(6), 1291-1311. https://doi.org/10.12989/eas.2015.9.6.1291. 
  53. Li, H.N. and Li, G. (2007), "Experimental study of structure with 'dual function' metallic dampers", Eng. Struct., 29(8), 1917-1928. https://doi.org/10.1016/j.engstruct.2006.10.007. 
  54. Li, J. and Xu, L. (2023), "Seismic responses and damage control of long-span continuous rigid-frame bridges considering the longitudinal pounding effect under strong ground motions", J. Bridg. Eng., 28(2), 04022140. https://doi.org/10.1061/JBENF2.BEENG-5871. 
  55. Mahjoubi, S. and Maleki, S. (2016), "Seismic performance evaluation and design of steel structures equipped with dualpipe dampers", J. Constr. Steel Res., 122, 25-39. https://doi.org/10.1016/j.jcsr.2016.01.023. 
  56. Maleki, S. and Bagheri, S. (2010a), "Pipe damper, Part I: Experimental and analytical study", J. Constr. Steel Res., 66(8), 1088-1095. https://doi.org/10.1016/j.jcsr.2010.03.010. 
  57. Maleki, S. and Bagheri, S. (2010b), "Pipe damper, Part II: Application to bridges", J. Constr. Steel Res., 66(8), 1096-1106. https://doi.org/10.1016/j.jcsr.2010.03.011. 
  58. Maleki, S. and Mahjoubi, S. (2013), "Dual-pipe damper", J. Constr. Steel Res., 85, 81-91. https://doi.org/10.1016/j.jcsr.2013.03.004. 
  59. Maleki, S. and Mahjoubi, S. (2014), "Infilled-pipe damper", J. Constr. Steel Res., 98, 45-58. https://doi.org/10.1016/j.jcsr.2014.02.015. 
  60. Mansouri, I., Arabzadeh, A., Farzampour, A., Hu, J.W., Mansouri, I., Arabzadeh, A., Farzampour, A. and Hu, J.W. (2020), "Seismic behavior investigation of the steel multi-story moment frames with steel plate shear walls", Steel Compos. Struct., 37(1), 91. https://doi.org/10.12989/scs.2020.37.1.091. 
  61. Mohebbi, M. and Bakhshinezhad, S. (2021), "Multiple performance criteria-based risk assessment for structures equipped with MR dampers", Earthq. Struct., 20(5), 495-512. https://doi.org/10.12989/eas.2021.20.5.495. 
  62. Oh, S.H., Kim, Y.J. and Ryu, H.S. (2009), "Seismic performance of steel structures with slit dampers", Eng. Struct., 31(9), 1997-2008. https://doi.org/10.1016/j.engstruct.2009.03.003. 
  63. Palazzo, G., Lopez-Almansa, F., Cahis, X. and Crisafulli, F. (2009), "A low-tech dissipative buckling restrained brace. Design, analysis, production and testing", Eng. Struct., 31(9), 2152-2161. https://doi.org/10.1016/j.engstruct.2009.03.015. 
  64. Patel, C.C. and Jangid, R.S. (2011), "Dynamic response of adjacent structures connected by friction damper", Earthq. Struct., Techno Press, 2(2), 149-169. https://doi.org/10.12989/eas.2011.2.2.149. 
  65. Patel, C.C. and Jangid, R.S. (2014), "Dynamic response of identical adjacent structures connected by viscous damper", Struct. Control Hlth. Monit., 21(2), 205-224. https://doi.org/10.1002/STC.1566. 
  66. Patil, V.B. and Jangid, R.S. (2011), "Response of wind-excited benchmark building installed with dampers", Struct. Des. Tall Spec. Build., 20(4), 497-514. https://doi.org/10.1002/TAL.523. 
  67. Qu, B., Dai, C., Qiu, J., Hou, H. and Qiu, C. (2019), "Testing of seismic dampers with replaceable U-shaped steel plates", Eng. Struct., 179, 625-639. https://doi.org/10.1016/j.engstruct.2018.11.016. 
  68. Rai, D.C., Annam, P.K. and Pradhan, T. (2013), "Seismic testing of steel braced frames with aluminum shear yielding dampers", Eng. Struct., 46, 737-747. https://doi.org/10.1016/j.engstruct.2012.08.027. 
  69. Rousta, A.M. and Azandariani, M. . (2022), "Micro-finite element and analytical investigations of seismic dampers with steel ring plates", Steel Compos. Struct., 43(5), 565. https://doi.org/10.12989/scs.2022.43.5.565. 
  70. Rousta, A.M. and Zahrai, S.M. (2017), "Cyclic testing of innovative two-level control system: Knee brace & vertical link in series in chevron braced steel frames", Struct. Eng. Mech., 64(3), 301-310. https://doi.org/10.12989/sem.2017.64.3.301. 
  71. Rousta, A.M. and Zahrai, S.M. (2018), "Parametric study of a proposed hybrid damping system : KE+VLB in Chevron braced frames", Acta Tech., 63(4B), 1-16. 
  72. Rousta, A.M., Gorji Azandariani, M., Safaei Ardakani, M.A. and Shoja, S. (2022), "Cyclic behavior of an energy dissipation system with the vertical steel panel flexural-yielding dampers", Struct., 45, 629-644. https://doi.org/10.1016/j.istruc.2022.09.047. 
  73. Rousta, A.M., Shoja, S. and Amin Safaei Ardakani, M. (2023), "Investigating cyclic and pushover performance of different metallic yielding dampers", J. Rehab. Civil Eng., 11(3), 122-143. https://doi.org/10.22075/jrce.2022.26848.1639. 
  74. Rousta, A.M., Shojaeifar, H., Azandariani, M.G., Saberiun, S. and Abdolmaleki, H. (2021), "Cyclic behavior of an energy dissipation semi-rigid moment steel frames (SMRF) system with LYP steel curved dampers", Struct. Eng. Mech., 80(2), 129. https://doi.org/10.12989/sem.2021.80.2.129. 
  75. Sahoo, D.R., Singhal, T., Taraithia, S.S. and Saini, A. (2015), "Cyclic behavior of shear-and-flexural yielding metallic dampers", J. Constr. Steel Res., 114, 247-257. https://doi.org/10.1016/j.jcsr.2015.08.006. 
  76. Sharma, A. and Jangid, R.S. (2012), "Performance of variable curvature sliding isolators in base-isolated benchmark building", Struct. Des. Tall Spec. Build., 21(5), 354-373. https://doi.org/10.1002/TAL.600. 
  77. Skinner, R.I., Kelly, J.M. and Heine, A.J. (1974), "Hysteretic dampers for earthquake-resistant structures", Earthq. Eng. Struct. Dyn., 3(3), 287-296. https://doi.org/10.1002/eqe.4290030307. 
  78. Talebi, E., Tahir, M.M., Zahmatkesh, F. and Kueh, A.B.H. (2015), "A numerical analysis on the performance of buckling restrained braces at fire-study of the gap filler effect", Steel Compos. Struct., 19(3), 661-678. https://doi.org/10.12989/scs.2015.19.3.661. 
  79. Tsai, K., Chen, H., Hong, C. and Su, Y. (1993), "Design of steel triangular plate energy absorbers for seismic-resistant construction", Earthq. Spectra, 9(3), 505-528. https://doi.org/10.1193/1.1585727. 
  80. Usefvand, M., Rousta, A.M., Azandariani, M.G. and Abdolmaleki, H. (2021), "Steel dual-ring dampers: Micro-finite element modelling and validation of cyclic behavior", Smart Struct. Syst., 28(4), 579. https://doi.org/10.12989/sss.2021.28.4.579. 
  81. Vision2000, S. (1995), Structural Engineers Association of California, Sacramento, CA. 
  82. Whittaker, A.S., Bertero, V.V., Thompson, C.L. and Alonso, L.J. (1991), "Seismic testing of steel plate energy dissipation devices", Earthq. Spectra, 7(4), 563-604. https://doi.org/10.1193/1.1585644. 
  83. Xie, Q., Zhou, Z. and Zhang, L. (2021), "Self-centering BRBs with composite tendons in series: Tests and structural analyses", Steel Compos. Struct., 40(3), 435-450. https://doi.org/10.12989/scs.2021.40.3.435. 
  84. Xu, L.H., Xie, X.S. and Li, Z.X. (2018b), "A self-centering brace with superior energy dissipation capability: Development and experimental study", Smart Mater. Struct., 27(9), 095017. https://doi.org/10.1088/1361-665X/AAD5B0. 
  85. Xu, L., Chen, P. and Li, Z. (2021), "Development and validation of a versatile hysteretic model for pre-compressed self-centering buckling-restrained brace", J. Constr. Steel Res., 177, 106473. https://doi.org/10.1016/j.jcsr.2020.106473. 
  86. Xu, L., Li, Z. and Lv, Y. (2014), "Nonlinear seismic damage control of steel frame-steel plate shear wall structures using MR dampers", Earthq. Struct., 7(6), 937-953. https://doi.org/10.12989/eas.2014.7.6.937. 
  87. Xu, L.H. and Zhang, Y. (2021), "Hysteresis behavior of bottomstory self-centering shear wall with steel brace-assembled bottom", J. Constr. Steel Res., 186, 106893. https://doi.org/10.1016/j.jcsr.2021.106893. 
  88. Xu, L.H., Xie, X.S. and Li, Z.X. (2018a), "Development and experimental study of a self-centering variable damping energy dissipation brace", Eng. Struct., 160, 270-280. https://doi.org/10.1016/j.engstruct.2018.01.051. 
  89. Xu, L.Y., Nie, X. and Fan, J.S. (2016), "Cyclic behaviour of lowyield-point steel shear panel dampers", Eng. Struct., 126, 391-404. https://doi.org/10.1016/j.engstruct.2016.08.002. 
  90. Zahrai, S.M. and Hosein Mortezagholi, M. (2018), "Cyclic performance of an elliptical-shaped damper with shear diaphragms in chevron braced steel frames", J. Earthq. Eng., 22(7), 1209-1232. https://doi.org/10.1080/13632469.2016.1277436. 
  91. Zare, E., Gholami, M., Usefvand, E. and Gorji Azandariani, M. (2023), "Performance-based plastic design of bucklingrestrained braced frames with eccentric configurations", Earthq. Struct., 24(5), 317. https://doi.org/10.12989/eas.2023.24.5.317. 
  92. Zhang, C., Aoki, T., Zhang, Q. and Wu, M. (2013), "Experimental investigation on the low-yield-strength steel shear panel damper under different loading", J. Constr. Steel Res., 84, 105-113. https://doi.org/10.1016/j.jcsr.2013.01.014. 
  93. Zhang, C., Zhang, Z. and Shi, J. (2012), "Development of high deformation capacity low yield strength steel shear panel damper", J. Constr. Steel Res., 75, 116-130. https://doi.org/10.1016/j.jcsr.2012.03.014. 
  94. Zhang, Y. and Xu, L. (2022), "Cyclic response of a self-centering RC wall with tension-compression-coupled disc spring devices", Eng. Struct., 250, 113404. https://doi.org/10.1016/j.engstruct.2021.113404.