• 제목/요약/키워드: MR elastomer(MRE)

검색결과 10건 처리시간 0.021초

자기장 응답형 엘라스토머 개발을 위한 기초연구 (Basic Study for Development of Magneto-rheological Elastomer)

  • 정경호;윤규서
    • Elastomers and Composites
    • /
    • 제45권2호
    • /
    • pp.106-111
    • /
    • 2010
  • 천연고무와 실리콘고무에 자기장응답형 분말을(Magnetic Responsible Powder; MRP) 배합하여 자기장응답형 엘라스토머(Magneto-rheological Elastomer; MRE)를 제조하였다. MRP의 최적 사용량은 30 vol.% 였으며 천연고무 기반 MRE의 기계적 물성은 실리콘고무 기반 MRE 보다 우수했지만, magneto-rheological (MR) 효과는 실리콘고무 기반 MRE가 더욱 우수하였다. MR 효과는 Self-modified Electromagnet Applied Fast Fourier Transform Analyser (SEFFTA)를 사용하여 측정되었는데 천연고무 기반 MRE의 경우는 10%, 실리콘고무 기반 MRE의 경우는 최대 35.7%까지 나타내었다. 네오디뮴 자석을 이용하여 MRE를 경화시키기 전 MRP를 선 배향 시킬 경우 더욱 우수한 MR 효과를 얻을 수 있었으며, MRP의 배향은 주사전자현미경을 이용하여 분석하였다.

Effect of Precured EPDM on the Property of Magneto-rheological Elastomer Based on NR/EPDM Blend

  • Na, Bokgyun;Chung, Kyungho
    • Elastomers and Composites
    • /
    • 제53권2호
    • /
    • pp.67-74
    • /
    • 2018
  • Magneto-rheological elastomers (MREs) are smart materials in which the inherent stiffness and damping properties can be changed by the influence of an external magnetic field. The magneto-rheological (MR) effect depends on the orientation characteristics of the dispersed magneto-responsible particles (MRPs) in the matrix. In this study, natural rubber (NR) and ethylene propylene diene rubber (EPDM) were blended and used as a matrix of an MRE. EPDM was pre-cured before blending with NR. The Mooney viscosity, curing characteristics, and mechanical properties were analyzed with various pre-curing conditions of EPDM and the NR/EPDM blend. The results show that excellent mechanical properties of the NR/EPDM blend-based MRE were obtained when the pre-curing time of EPDM was 60 min. The aging property of the NR-based MRE was improved by the introduction of pre-cured EPDM. Also, the anisotropic MRE showed a higher MR effect than that of the isotropic MRE.

Effect of Surface Treated Magneto-responsible Particle on the Property of Magneto-rheological Elastomer Based on Silicone Rubber

  • Choi, Soyeon;Chung, Kyungho;Kwon, Seunghyuk;Choi, Hyoungjin
    • Elastomers and Composites
    • /
    • 제51권2호
    • /
    • pp.113-121
    • /
    • 2016
  • Magneto-rheological elastomer (MRE) is a material which shows reversible and various modulus under magnetic field. Comparing to conventional rubber vibration isolator, MREs are able to absorb broader frequency range of vibration. These characteristic phenomena result from the orientation of magnetic particle (i.e., chain-like formation) in rubber matrix. In this study, silicone rubber was used as a matrix of MREs. Carbonyl iron particle (CIP) was used to give magnetic field reactive modulus of MRE. The surface of the CIP was modified with chemical reactants such as silane coupling agent and poly(glycidyl methacrylate), to improve interfacial adhesion between matrix and CIP. The mechanical properties of MREs were measured without the application of magnetic field. The results showed that the tensile strength was decreased while the hardness was increased with the addition of CIP. Also, surface modification of CIP resulted in the improvement of physical properties of MRE, but the degree of orientation of CIP became decreased. The analysis of MR effect was carried out using electromagnetic equipment with various magnetic flux. As the addition of CIP and magnetic flux increased, increment of MR effect was observed. Even though the surface modification of CIP gave positive effect on the mechanical properties of MRE, MR effect was decreased with the surface modification of CIP due to decrease of CIP orientation. Throughout this study, it was found that the loading amounts of CIP affected the mechanical properties of MRE, and surface property of CIP was an important factor on MR effect of MRE.

Magnetic Reactive Particle 코팅 및 인가전류에 따른 Magnetorheological Elastomer 의 전단계수 측정 (Experimental Evaluation on Shear Modulus of MRE due to MRP Coating and Induced Current)

  • 오재응;정운창;김진수;윤정민;노정준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.927-929
    • /
    • 2014
  • MRE(Magneto-rheological Elastomer) is a material which shows reversible and various modulus in magnetic field. Comparing to conventional rubber vibration isolator, MREs are able to absorb broader frequency range of vibration. These characteristic phenomena result from the orientation of magnetic particle (i.e., chain-like formation). Magnetic reactive powder(MRP), having rapid magnetic reaction, was selected as a magnetic particle to give magnetic field reactive modulus. The mechanical properties of manufactured MREs were measured with the application of magnetic field. The analysis of MR effect was carried out by FFT analyzer with various induced current. As induced magnetic field intensity increased and coated with MRP, increment of MR effect was observed.

  • PDF

낙하 충격 실험을 통한 자기유변탄성체의 충격 흡수 성능 평가 (The Evaluation of Shock Absorption Performance of Magneto-Rheological Elastomer Through the Drop Impact Test)

  • 정경식;이철희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.92-93
    • /
    • 2013
  • In this study, Shock Absorption performance of Magneto-rheological elastomer(MRE) is identified through the drop impact test. Magneto-rheological materials are divided into two groups by MR fluid in fluid state and MR elastomer in solid state like rubber. The stiffness characteristics of Magneto-rheological material can be changed as magnetic field is applied. The impact loads in MR elastomer were measured under weight of impactor. Experiment results are shown through the experiments to confirm the effect of shock absorption of MR elastomer. Thus, the MR elastomer can be applied to shock absorber used in area that shock occurs.

  • PDF

Feasibility of a new hybrid base isolation system consisting of MR elastomer and roller bearing

  • Hwang, Yongmoon;Lee, Chan Woo;Lee, Junghoon;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.323-335
    • /
    • 2020
  • Magnetorheological elastomer (MRE), a smart material, is an innovative material for base isolation system. It has magnetorheological (MR) effect that can control the stiffness in real-time. In this paper, a new hybrid base isolation system combining two electromagnetic closed circuits and the roller bearing is proposed. In the proposed system, the roller part can support the vertical load. Thus, the MRE part is free from the vertical load and can exhibit the maximum MR effect. The MRE magnetic loop is constructed in the free space of the roller bearing and forms a strong magnetic field. To demonstrate the performance of the proposed hybrid base isolation system, dynamic characteristic tests and performance evaluation were carried out. Dynamic characteristic tests were performed under the extensive range of strain of the MRE and the change of the applied current. Performance evaluation was carried out using the hybrid simulation under five earthquakes (i.e., El Centro, Kobe, Hachinohe, Northridge, and Loma Prieta). Especially, semi-active fuzzy control algorithm was applied and compared with passive type. From the performance evaluation, the comparison shows that the new hybrid base isolation system using fuzzy control algorithm is superior to passive type in reducing the acceleration and displacement responses of a target structure.

MR 엘라스토머를 이용한 기초격리 시스템에 대한 타당성 연구 (Feasibility Study of MR Elastomer-based Base Isolation System)

  • 장동두;무하마드 우스만;성승훈;문영종;정형조
    • 한국전산구조공학회논문집
    • /
    • 제21권6호
    • /
    • pp.597-605
    • /
    • 2008
  • 본 논문에서는 지진으로부터 구조물을 효과적으로 보호하기 위하여 MR 엘라스토머(MRE)를 이용한 새로운 형태의 스마트 기초격리 시스템을 제안하고, 이에 대한 내진성능을 파악하였다. MRE는 자성물질을 포함한 실리콘 혹은 고무로써 자기장에 의해 강성이 변하는 스마트 재료이다. 기초격리 시스템은 토목 및 건축분야에서 구조물의 내진성능 향상을 위해 가장 널리 쓰이는 장치로 지반과 구조물을 격리시켜 구조물에 가해지는 입력 하중을 감소시켜주는 장치이다. 기존 수동형태의 기초격리 장치는 다양한 입력하중에 대한 적응성이 부족하고 기초격리 장치에서의 과도한 변위 등의 단점이 있는 반면, 새로 제안한 시스템은 제어 가능한 강성범위가 넓어 이를 개선할 수 있다. MRE를 이용한 기초격리 장치의 성능을 확인하기 위하여 기초격리 장치를 도입한 단층 및 5층의 건물에 대해 다양한 역사지진 하중을 이용하여 수치해석을 수행하였다. 수치해석 결과, 제안된 시스템은 기존 수동형태의 시스템에 비해 구조물의 응답 및 기초격리장치의 변위를 감소시키는 데 탁월한 효과가 있음을 확인하였다.

인가전류 세기와 CIP 성분비에 따른 MRE 의 기계적 물성 측정 (Measurement of mechanical properties of Magneto-rhological Elastomer due to current and volume ratio of Carbonyl Iron Power)

  • 오재응;윤지현;윤규서;정경호;조현철;이성훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.791-794
    • /
    • 2008
  • MRE(Magneto-rheological Elastomer) is a material which shows reversible and various modulus in magnetic field. Comparing to conventional rubber vibration isolator, MREs are able to absorb broader frequency range of vibration. These characteristic phenomena result from the orientation of magnetic particle (i.e., chain-like formation) in rubber matrix. In this study, NR was used as a matrix in order to manufacture MREs. Magnetic reactive powder(MRP), having rapid magnetic reaction, was selected as a magnetic particle to give magnetic field reactive modulus. The mechanical properties of manufactured MREs were measured without the application of magnetic field. The results showed that the tensile property and resilience were decreased while the hardness was increased with the addition of CIP. The analysis of MR effect was carried out by FFT analyzer with various magnetic flux. As the addition of MRP and magnetic flux increased, increment of MR effect was observed.

  • PDF

Silicon Matrix MRE 의 인가자기장에 따른 전단계수 증가율 측정 (Measurement of Shear Modulus Increment Ratio of Magneto-rheological Elastomer based on Silicon Matrix due to Induced Magnetic field)

  • 오재응;노정준;이선훈;김진수;정운창
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.288-291
    • /
    • 2014
  • MRE(Magneto-rheological Elastomer) is a material which shows reversible and various modulus in magnetic field. Comparing to conventional rubber vibration isolator, MREs are able to absorb broader frequency range of vibration. These characteristic phenomena result from the orientation of magnetic particle (i.e., chain-like formation) in rubber matrix. In this study, Silicon was used as a matrix in order to manufacture MREs. Magnetic reactive powder(MRP), having rapid magnetic reaction, was selected as a magnetic particle to give magnetic field reactive modulus. The mechanical properties of manufactured MREs were measured with the application of magnetic field. The analysis of MR effect was carried out by FFT analyzer with various induced magnetic field. As the addition of CIP and induced magnetic field intensity increased, increment of MR effect was observed.

  • PDF

CIP 부피비에 따른 이방성 MRE의 전단계수 변화율 (The Variation Rate of Shear Modulus for Anisotropic Magneto-rheological Elastomer due to Volume Fraction of CIP)

  • 정운창;윤지현;양인형;이유엽;오재응
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1132-1137
    • /
    • 2011
  • MRE(magneto-rheological elastomers) is a material which shows reversible and various modulus in magnetic field. Comparing to conventional rubber vibration isolator, MREs are able to absorb vibration of broader frequency range. These characteristic phenomena result from the orientation of magnetic particles named carbonyl iron powder(CIP) in rubber matrix. In this paper, simulation on variation rate of shear modulus for anisotropic MRE due to volume fraction of CIP and an effective permeability model was applied to predict the field-induced shear modulus of MREs. Also, the variation rate of shear modulus for anisotropic MRE was derived using magneto-mechanical theory. Based on Maxwell-Garnett mixing rule, the increment of shear modulus was calculated to evaluate the shear modulus of MREs with column structure of CIP due to induced current. The simulation results on variation rate of shear modulus can be applied to the variable mechanical system of MRE such as tunable vibration absorber, stiffness variable bush and mount.