• Title/Summary/Keyword: MPTP-induced Parkinson model

Search Result 37, Processing Time 0.023 seconds

Korean Red Ginseng protects dopaminergic neurons by suppressing the cleavage of p35 to p25 in a Parkinson's disease mouse model

  • Jun, Ye Lee;Bae, Chang-Hwan;Kim, Dongsoo;Koo, Sungtae;Kim, Seungtae
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.148-154
    • /
    • 2015
  • Background: Ginseng is known to have antiapoptotic, anti-inflammatory, and antioxidant effects. The present study investigated a possible role of Korean Red Ginseng (KRG) in suppressing dopaminergic neuronal cell death and the cleavage of p35 to p25 in the substantia nigra (SN) and striatum (ST) using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mouse model. Methods: Ten-week-old male C57BL/6 mice were injected intraperitoneally with 30 mg/kg of MPTP at 24-h intervals for 5 d, and then administered KRG (1 mg/kg, 10 mg/kg, or 100 mg/kg) once a day for 12 consecutive days from the first injection. Pole tests were performed to assess the motor function of the mice, dopaminergic neuronal survival in the SN and ST was evaluated using tyrosine hydroxylase-immunohistochemistry, and the expressions of cyclin-dependent kinase 5 (Cdk5), p35, and p25 in the SN and ST were measured using Western blotting. Results: MPTP administration caused behavioral impairment, dopaminergic neuronal death, increased Cdk5 and p25 expression, and decreased p35 expression in the nigrostriatal system of mice, whereas KRG dose-dependently alleviated these MPTP-induced changes. Conclusion: These results indicate that KRG can inhibit MPTP-induced dopaminergic neuronal death and suppress the cleavage of p35 to p25 in the SN and the ST, suggesting a possible role for KRG in the treatment of Parkinson's disease.

Proteomic change by Korean Red Ginseng in the substantia nigra of a Parkinson's disease mouse model

  • Kim, Dongsoo;Kwon, Sunoh;Jeon, Hyongjun;Ryu, Sun;Ha, Ki-Tae;Kim, Seungtae
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.429-435
    • /
    • 2018
  • Background: Recent studies have shown that Korean Red Ginseng (KRG) successfully protects against dopaminergic neuronal death in the nigrostriatal pathway of a Parkinson's disease (PD) mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration; however, the mechanism has yet to be identified. Therefore, in this study we used two-dimensional electrophoresis to investigate the effects of KRG on the changes in protein expression in the substantia nigra (SN) of MPTP-treated mice. Methods: Male C57BL/6 mice (9 wk old) were intraperitoneally administered MPTP (20 mg/kg) four times at 2-h intervals, after which KRG (100 mg/kg) was orally administered once a day for 5 d. Two hours after the fifth KRG administration, a pole test was conducted to evaluate motor function, after which the brains were immediately collected. Survival of dopaminergic neurons was measured by immunohistochemistry, and protein expression was measured by two-dimensional electrophoresis and Western blotting. Results: KRG alleviated MPTP-induced behavioral dysfunction and neuronal toxicity in the SN. Additionally, the expression of eight proteins related to neuronal formation and energy metabolism for survival were shown to have changed significantly in response to MPTP treatment or KRG administration. KRG alleviated the downregulated protein expression following MPTP administration, indicating that it may enhance neuronal development and survival in the SN of MPTP-treated mice. Conclusion: These findings indicate that KRG may have therapeutic potential for the treatment of patients with PD.

Neuroprotective Effects of Herbal Ethanol Extract from Gynostemma pentaphyllum on Dopamine Neurons in Rotenone- and MPTP-induced Animal Model of Parkinson's Disease (Rotenone- 및 MPTP-유도 파킨슨병 동물 모델에서 돌외 에탄올 추출물의 Dopamine 신경세포 보호작용)

  • Suh, Kwang Hoon;Choi, Hyun Sook;Shin, Kun Seong;Zhao, Ting Ting;Kim, Seung Hwan;Hwang, Bang Yeon;Lee, Chong Kil;Lee, Myung Koo
    • YAKHAK HOEJI
    • /
    • v.57 no.2
    • /
    • pp.77-86
    • /
    • 2013
  • The neuroprotective effects of herbal ethanol extract (GP-EX) from Gynostemma pentaphyllum on dopamine neurons in animal model of Parkinson's disease (PD) were investigated. Rats and mice were administered with rotenone (2.5 mg/kg) for 28 days and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg) for 5 days for the PD models, respectively and the animals were simultaneously treated with GP-EX (30 mg/kg, daily). After preparing the PD models, the animals were also administered with L-DOPA (10 mg/kg) for 14 days with or without GP-EX treatment. Treatment with GP-EX (30 mg/kg) inhibited the rotenone- and MPTP-induced neurotoxic effects in dopamine neurons of rats or mice, which was determined by the numbers of tyrosine hydroxylase-immunohistochemical staining survival cells, as well as the levels of dopamine, 3,4-dihydroxyphenylacetic acid and homovanillic acid. GP-EX (30 mg/kg) also showed the protective effects on neurotoxicity which was induced by long-term administration of L-DOPA (10 mg/kg) in rotenone- and MPTP-induced animal model of PD. The used doses of GP-EX (30 mg/kg) did not produce any signs of toxicity, such as weight loss, diarrhea, or vomiting, in rats and mice during the treatment periods. These results suggest that GP-EX has the protective functions against chronic L-DOPA-induced neurotoxic reactions in dopamine neurons of rotenone- and MPTP-induced animal model of PD. Therefore, the natural GP-EX may be beneficial in the prevention of PD progress and L-DOPA-induced neurotoxicity in PD patients.

Comparative Study of the Neuroprotective Effect of Sihogyeji-tang, Sihosogan-tang, and Sihocheonggan-tang on an MPTP-Induced Parkinson's Disease Mouse Model (MPTP로 유도된 파킨슨병 생쥐 모델에 대한 시호계지탕, 시호소간탕, 시호청간탕의 신경세포 보호 효과 비교 연구)

  • Ji Eun Seo;Hanul Lee;Chang-Hwan Bae;Dong Hak Yoon;Hee-Young Kim;Seungtae Kim
    • Korean Journal of Acupuncture
    • /
    • v.40 no.3
    • /
    • pp.90-98
    • /
    • 2023
  • Objectives : Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide and is characterized by the loss of the dopaminergic neurons in the substantia nigra (SN). In a previous in vitro study, we demonstrated that Sihogyeji-tang (SG), Sihosogan-tang (SS), and Sihocheonggan-tang (SC) have the potential to be candidate medicines for PD. This study aimed to compare the neuroprotective effect of SG, SS, and SC using 1-methyl-4-phenyl-1,2,3,6-tetrahydrophridine (MPTP)-induced PD mouse model. Methods : Eight-week-old male C57BL/6 mice were intraperitoneally administered with 30 mg/kg of MPTP for 5 days and orally administered SG, SS and SC for 12 days from the first MPTP injection. Motor function was assessed using the pole test and the rotarod test. Dopaminergic neuronal survival in the SN and striatum was evaluated through tyrosine-hydroxylase immunohistochemistry. Results : MPTP administration resulted in behavioral impairment and dopaminergic neuronal death in the SN and striatum. In the pole test, treatment with SG, SS, and SC alleviated the MPTP-induced motor dysfunction on day 5 and 12. In the rotarod test, SS and SG alleviated the MPTP-induced motor dysfunction on day 5, while only SS showed improvement on day 12. SS and SG significantly protected dopaminergic neurons in the SN from MPTP toxicity, and all three compounds (SG, SS, and SC) showed significant protection in the striatum. Notably, SS demonstrated superior efficacy in suppressing MPTP-induced motor dysfunction and dopaminergic neuronal death compared to SG and SC. Conclusions : These findings suggest that SS is the most effective formula among SG, SS, and SC for PD, indicating its potential role in the treatment of PD.

Effect of Kidney Tonification of Saam Acupuncture in Parkinson's Disease Mouse Model (파킨슨병 동물 모델을 이용한 신정격 사암침법의 도파민성 신경세포 보호 효과 연구)

  • Kim, Seungtae;Lee, Sang-Hyup;Kim, Bo-Kyung
    • Korean Journal of Acupuncture
    • /
    • v.39 no.1
    • /
    • pp.8-15
    • /
    • 2022
  • Objectives : Saam acupuncture is one of the indigenous therapeutic modalities in traditional Korean medicine. In this study, the neuroprotective effect of Saam acupuncture of kidney tonification was investigated using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Methods : Twelve-week-old male C57BL/6 mice were intraperitoneally administered with 30 mg/kg of MPTP at 24-h intervals for 5 days and acupuncture stimulation at LU8, KI7, SP3 and KI3 was performed once a day for 12 days from the first MPTP injection. The pole test and the rotarod test were performed to evaluate motor function, and dopaminergic neuronal survival in the substantia nigra (SN) and striatum was evaluated using tyrosine-hydroxylase immunohistochemistry. Results : MPTP administration caused behavioral impairment and dopaminergic neuronal death in the nigrostriatal pathway. Whereas the Saam acupuncture treatment alleviated the MPTP-induced motor dysfunction and dopaminergic neuronal death in the SN and striatum. Conclusions : Saam acupuncture of kidney tonification can alleviate the MPTP-induced motor dysfunction and dopaminergic neuronal death in the nigrostriatal pathway, suggesting a possible role for acupuncture in the treatment of Parkinson's disease.

Thuja orientalis leaves extract protects dopaminergic neurons against MPTP-induced neurotoxicity via inhibiting inflammatory action (MPTP로 유도된 Parkinson's disease 동물 모델에서 항염증효과를 통한 측백엽의 도파민신경보호 효과)

  • Park, Gunhyuk;Kim, Hyo Geun;Ju, Mi Sun;Kim, Ae-Jung;Oh, Myung Sook
    • The Korea Journal of Herbology
    • /
    • v.29 no.3
    • /
    • pp.27-33
    • /
    • 2014
  • Objectives : The aim of this study was to investigate the protective effect of extract of Thuja orientalis leaves (TOFE) against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity by inhibition of inflammation in in vitro and in vivo models of Parkinson's disease (PD). Methods : We evaluated the effect of TOFE against lipopolysaccharide (LPS)/1-methyl-4-phenylpyridinium ($MPP^+$) toxicity using nitric oxide (NO) assay, inducible NO synthase and cyclooxygenase 2 western blot, tyrosine hydroxylase and microglia activation immunohistochemistry (IHC) in BV2 cell, primary rat mesencephalic neurons, or C57BL/6 mice. We also evaluated the effect of TOFE in mice PD model induced by MPTP. C57BL/6 mice were treated with TOFE 50 mg/kg for 5 days and were injected intraperitoneally with four administrations of MPTP on the last day. We conducted behavioral tests and IHC analysis to see how TOFE affect MPTP-induced neuronal loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and striatum (ST) of mice. To assess the anti-inflammation effects, we carried out glial fibrillary acidic protein and macrophage-1 antigen integrin alpha M in IHC in SNpc and ST of mice. Results : In an in vitro system, TOFE decreasesd NO generations in BV2 cells. TOFE protected dopaminergic cells against LPS or $MPP^+$-induced toxicity in primary mesencephalic dopaminergic neurons. In vivo system, TOFE at 50 mg/kg treated group showed improved motor deteriorations than the MPTP only treated group and TOFE significantly protected striatal dopaminergic damage from MPTP-induced neurotoxicity in mice. Moreover, TOFE inhibited activation of astrocyte and microglia in SNpc and ST of the mice. Conclusions : We concluded that TOFE showed anti-parkinsonian effect by protection of dopaminergic neurons against MPTP toxicity through anti-inflammatory actions.

Neuroprotective Mechanism of Acupuncture at GB34 for Dopaminergic Neurons in the Striatum of a Parkinson's Disease Mouse Model (파킨슨병 동물 모델을 이용한 양릉천(GB34)의 선조체 내 도파민성신경세포 보호 기전 연구)

  • Jeon, Hyongjun;Yoo, Tae-Won;Kim, Dongsoo;Kwon, Sunoh;Kim, Seungtae
    • Korean Journal of Acupuncture
    • /
    • v.32 no.3
    • /
    • pp.108-115
    • /
    • 2015
  • Objectives : Acupuncture is frequently used as an alternative therapy for Parkinson's disease(PD) in Korea. Using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced Parkinson's disease mouse model, the present study investigated a possible role of acupuncture stimulation at GB34 in suppressing dopaminergic neuronal death and regulating the phosphorylation of protein kinase B(Akt) in substantia nigra(SN) and striatum(ST). Methods : Eight-week-old male C57BL/6 mice were administered intraperitoneally with 30 mg/kg of MPTP at 24-h intervals for 5 days. Acupuncture stimulation at GB34 or SI3 was performed once a day for 12 days consecutively from the first MPTP injection. After the last acupuncture stimulation, pole test was performed to assess the effect of the acupuncture stimulations. Dopaminergic neuronal survival in the SN and the ST, dopamine transporter( DAT) and caspase-3 expression in the ST were evaluated by immunohistochemistry. The phosphorylations of Akt in the SN and the ST were measured by Western blotting. Results : MPTP administration caused behavioral impairment and dopaminergic neuronal death in the SN and the ST. It also decreased DAT expression and increased caspase-3 expression in the ST. Acupuncture stimulation at GB34 alleviated these MPTP-induced impairments. Moreover, MPTP suppressed Akt phosphorylation in the SN and the ST, whereas acupuncture stimulation at GB34 alleviated the phosphorylation in the SN. Conclusions : These results indicate that acupuncture stimulation at GB34 can inhibit MPTP-induced dopaminergic neuronal death and alleviate the Akt phosphorylation in the SN, suggesting a possible role for acupuncture in the treatment of PD.

Increased Slc6a4 Expression Associated with Decreased Dopaminergic Neurons in an MPTP Induced Parkinsonism Mouse Model (파킨슨병 동물 모델에서 도파민세포의 감소와 관련된 Slc6a4 발현의 증가)

  • Yeo, Sujung
    • Korean Journal of Acupuncture
    • /
    • v.38 no.3
    • /
    • pp.133-139
    • /
    • 2021
  • Objectives : Parkinson's disease is a neurodegenerative disease caused by a decrease in the dopaminergic neurons in the substantia nigra. The abnormal expression of solute carrier family 6 member 4 (Slc6a4) has been reported in patients with Parkinson's disease. Methods : In this study, we used MPTP to examine the changes in the expression of Slc6a4 in the brain of mice with Parkinson's disease and investigate its effect on dopaminergic neuronal cell death. Results : In the examination of the Slc6a4 expression in the substantia nigra of MPTP-treated mice for 4 weeks. The gene expression was increased compared to the normal group. To investigate the relationship between Slc6a4 and dopaminergic neurons, we performed a study using siRNA of Slc6a4 in the dopaminergic neuronal cell line SH-SY5Y. Using the siRNA of Slc6a4 to evaluate gene expression, it revealed that the tyrosine hydroxylase (TH) expression increases when Slc6a4 decreases. Moreover, this confirms its effects on the dopaminergic neurons. Additionally, through the evaluation of factors related to apoptosis, in particular, it was established that the value of bax/bcl2 decreased and was affected. These results suggest that a decreased Slc6a4 expression induces an increase in TH expression, providing a mechanism of action for dopaminergic neurons regulated by Slc6a4 expression. Conclusions : Slc6a4 is deemed to be involved in the regulation of dopaminergic neurons, suggesting that an increased Slc6a4 expression induced by MPTP may influence a reduction of dopaminergic neurons.

The Effects of Red Ginseng and Fermented Red Ginseng on Neurotoxicity in Mice Induced by MPTP (홍삼과 발효홍삼이 MPTP에 의해 유도된 생쥐의 신경독성에 미치는 영향)

  • Yoo, Hyunsook;Na, Samsik;Chong, Myongsoo
    • Journal of the Korean Institute of Oriental Medical Informatics
    • /
    • v.19 no.2
    • /
    • pp.1-20
    • /
    • 2013
  • This research observed the interrelations between the active components found specifically in red ginseng and fermented red ginseng from among the variety of ginseng variations and the protective effect and anti-oxidant effect exercised on brain cells in the animal model for MPTP-induced neurotoxic Parkinson's Disease and obtained the following conclusions. The results above comprehensively demonstrated that the fermented red ginseng extract exercised greater protective effects against oxidant brain damage by MPTP when compared to the group administered with the red ginseng extract. This was induced an increase in TH protein expression, and further raised the efficiency of the anti-oxidant enzyme defensive system against neurotoxicity, thereby restraining the lipid peroxidation caused by the active oxygen generated during the course of MPTP metabolism and enhancing the body's defensive capacities in response to tissue damage, thereby demonstrating a protective effect against MPTP induced neurotoxicity.

  • PDF

Anti-parkinsonian effect of Cyperi Rhizoma via inhibition of neuroinflammatory action (향부자(香附子)의 염증 억제 작용을 통한 항파킨슨 효과)

  • Kim, Hyo Geun;Sim, Yeomoon;Oh, Myung Sook
    • The Korea Journal of Herbology
    • /
    • v.28 no.5
    • /
    • pp.21-28
    • /
    • 2013
  • Objectives : The aim of this study was to investigate the neuroprotective effects and mechanisms of Cyperi Rhizoma extracts (CRE) using in vitro and in vivo models of Parkinson's disease (PD). Methods : We evaluated the neuroprotective effect of CRE against 1-methyl-4-phenylpyridinium (MPP+) toxicity using tyrosine hydroxylase immunohistochemistry (IHC) in primary rat mesencephalic dopaminergic neurons. In addition, the effect of CRE was evaluated in mice PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). For evaluations, C57bl/6 mice were orally treated with CRE 50 mg/kg for 5 days and were injected intraperitoneally with MPTP (20 mg/kg) at 2 h intervals on the last day. To identify the CRE affects on MPTP-induced neuronal loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and striatum of mice, the behavioral tests and IHC analysis were carried out. Also, we conducted nitric oxide (NO) and tumor necrosis factor-alpha (TNF-${\alpha}$) assay in dopaminergic neurons and IHC using glial markers in SNpc of mice to assess the anti-inflammation effects. Results : In primary mesencephalic culture system, CRE protected dopaminergic cells against $10{\mu}M$ MPP+-induced toxicity at 0.2 and $1.0{\mu}g/mL$. In the behavior tests, CRE treated group showed improved motor deteriorations than those in the MPTP only treated group. CRE significantly protected striatal dopaminergic damage from MPTP-induced neurotoxicity in mice. Moreover, CRE inhibited productions of NO and TNF-${\alpha}$ in dopaminergic culture system and activation of astrocyte and microglia in SNpc of the mice. Conclusion : We concluded that CRE shows anti-parkinsonian effect by protecting dopaminergic neurons against MPP+/MPTP toxicities through anti-inflammatory actions.