• Title/Summary/Keyword: MPPT Tracking

Search Result 404, Processing Time 0.03 seconds

Global Maximum Power Point Tracking Method of Photovoltaic Array using Boost Converter (부스트 컨버터를 이용한 태양전지 어레이 전역 최대전력 점 추종 방법)

  • Hwang, Dong-Hyeon;Lee, Woo-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.216-223
    • /
    • 2018
  • Since solar cells have non-linear voltage-current output characteristics, Photovoltaic systems require the Maximum Power Point Tracking(MPPT) function. For this reason, a large number of MPPT techniques have been studied. However, the conventional MPPT techniques may fail to track the maximum power point when partial shading occurs in the solar cell array due to its characteristics. Therefore, it is necessary to research the MPPT technique that can follow the maximum power point in the partial shadow condition. In this paper, the characteristics of solar cell arrays in partial shadowing are analyzed and the MPPT technique which can follow the maximum power point in partial shadow condition has been proposed. To validate the proposed MPPT method, simulation and experimentation results are provided.

Comparisons on Maximum Power Point Tracking Control of a Thermoelectric Generator on Vehicles (차량 적용을 위한 열전 소자 최대 전력 추종 제어 비교)

  • Jang, Yohan;Choung, Seunghoon;Bae, Sungwoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.159-166
    • /
    • 2021
  • This study compares the maximum power point tracking (MPPT) control methods of a thermoelectric generator on vehicles. The researchers conduct comparisons on five different MPPT methods, including a fractional open circuit voltage method, a perturbation and observation (P&O) method, an incremental conductance method, a linear extrapolation-based MPPT (LEMPPT) method, and a LEMPPT/P&O hybrid method. These five MPPT methods are theoretically analyzed in detail, and the comparisons are conducted through MATLAB/Simulink simulation results. The comparison outcomes reveal that linear MPPT methods, including LEMPPT and LEMPPT/P&O hybrid methods, are more suitable for a thermoelectric generator on vehicles than the other MPPT methods examined in this work.

A Noble Maximum Power Point Tracking Algorithm for Photovoltaic System without Chopper (초퍼 없는 태양광 발전시스템을 위한 새로운 최대전력점 추적 알고리즘)

  • 李 相 庸;崔 海 龍;高 再 錫;姜 秉 憙;李 明 彦;崔 圭 夏
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.171-177
    • /
    • 2002
  • The Photovoltaic systems with solar cell way Provide electrical energy to the utility/consumers, which are becoming one of the promising energy substitutes. The photovoltaic system can be classified into two types : One is the stand-alone type, and the other utility interactive one. The latter can return the generated power to the utility, but the former can't. The utility interactive systems are so valuable for peak power cut in summer season. In the photovoltaic systems the maximum power point tracking (MPPT) has been studied for the increase of the generating energy of the photovoltaic system. There are many control methods of MPPT, but a new MPPT algorithm is proposed to overcome the disadvantages of the conventional ones, and as a result the proposed method enables to improve both tracking ability and generating efficiency of photo voltaic system without DC chopper.

An Adaptive Maximum Power Point Tracking Scheme Based on a Variable Scaling Factor for Photovoltaic Systems (태양광 시스템을 위한 가변 조정계수 기반의 적응형 MPPT 제어 기법)

  • Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok;Lim, Chun-Ho;Kim, Woo-Chull
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.423-430
    • /
    • 2012
  • An adaptive maximum power point tracking (MPPT) scheme employing a variable scaling factor is presented. A MPPT control loop was constructed analytically and the magnitude variation in the MPPT loop gain according to the operating point of the PV array was identified due to the nonlinear characteristics of the PV array output. To make the crossover frequency of the MPPT loop gain consistent, the variable scaling factor was determined using an approximate curve-fitted polynomial equation about linear expression of the error. Therefore, a desirable dynamic response and the stability of the MPPT scheme were maintained across the entire MPPT voltage range. The simulation and experimental results obtained from a 3 KW rated prototype demonstrated the effectiveness of the proposed MPPT scheme.

A Study on the MPPT Control Algorithm and Efficiency Evaluation Method (MPPT제어 알고리즘 고찰 및 효율시험 평가법)

  • 유권종;김기현;정영석;김영석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.164-172
    • /
    • 2001
  • This paper describes common MPPT(Maximum Power Point Tracking) control algorithm; Constant Voltage Control, P&O(Perturbation and Observation), IncCond(Incremental Conductance), and investigated it\`s efficiency. Though simulation and efficiency evaluation, the steady/transient states characteristics and efficiency of control algorithms are analyzed respectively. Also, two-mode MPPT control to improve on the existing control algorithm. Moreover, is proposed for high efficiency this paper suggests a topology for MPPT measuring efficiency and a method of examination.

  • PDF

A Variable Step Size Incremental Conductance MPPT of a Photovoltaic System Using DC-DC Converter with Direct Control Scheme

  • Cho, Jae-Hoon;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.74-82
    • /
    • 2013
  • This paper presents a novel maximum power point tracking for a photovoltaic power (PV) system with a direct control plan. Maximum power point tracking (MPPT) must usually be integrated with photovoltaic (PV) power systems so that the photovoltaic arrays are able to deliver maximum available power. The maximum available power is tracked using specialized algorithms such as Perturb and Observe (P&O) and incremental Conductance (indCond) methods. The proposed method has the direct control of the MPPT algorithm to change the duty cycle of a dc-dc converter. The main difference of the proposed system to existing MPPT systems includes elimination of the proportional-integral control loop and investigation of the effect of simplifying the control circuit. The proposed method thus has not only faster dynamic performance but also high tracking accuracy. Without a conventional controller, this method can control the dc-dc converter. A simulation model and the direct control of MPPT algorithm for the PV power system are developed by Matlab/Simulink, SimPowerSystems and Matlab/Stateflow.

Optimum solar energy harvesting system using artificial intelligence

  • Sunardi Sangsang Sasmowiyono;Abdul Fadlil;Arsyad Cahya Subrata
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.996-1006
    • /
    • 2023
  • Renewable energy is promoted massively to overcome problems that fossil fuel power plants generate. One popular renewable energy type that offers easy installation is a photovoltaic (PV) system. However, the energy harvested through a PV system is not optimal because influenced by exposure to solar irradiance in the PV module, which is constantly changing caused by weather. The maximum power point tracking (MPPT) technique was developed to maximize the energy potential harvested from the PV system. This paper presents the MPPT technique, which is operated on a new high-gain voltage DC/DC converter that has never been tested before for the MPPT technique in PV systems. Fuzzy logic (FL) was used to operate the MPPT technique on the converter. Conventional and adaptive perturb and observe (P&O) techniques based on variables step size were also used to operate the MPPT. The performance generated by the FL algorithm outperformed conventional and variable step-size P&O. It is evident that the oscillation caused by the FL algorithm is more petite than variables step-size and conventional P&O. Furthermore, FL's tracking speed algorithm for tracking MPP is twice as fast as conventional P&O.

Comparative characteristics of the PV system according to the MPPT control Method (MPPT 제어기법에 따른 PV 시스템의 특성 비교)

  • Seo, Tae-Young;Ko, Jae-Sub;Kang, Sung-Min;Kim, Yu-Tak;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.956-957
    • /
    • 2015
  • This paper analyzes a operating characteristic for maximum power point tracking (MPPT) of photovoltaic generation system. MPPT methods are used to maximize PV array output power by tracking maximum power point(MPP) continuously. To increase the output efficiency of PV system, it is important to have more efficient MPPT. MPPT algorithm is widely used the control method such as the perturbation and observation(PO) method, incremental conductance(IC) method and constant voltage(CV) method. In case of the radiation is changed, this paper proposes a response characteristic with MPPT control algorithms. Also, it proposes the direct for a novel MPPT control algorithm development through the analyzed data, hereby proves the effectiveness of this paper.

  • PDF

Additional power conservation in 200W power plant with the application of high thermal profiled cooling liquid & improved deep learning based maximum power point tracking algorithm

  • Raj G. Chauhan;Saurabh K. Rajput;Himmat Singh
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.185-202
    • /
    • 2022
  • This research work focuses to design and simulate a 200W solar power system with electrical power conservation scheme as well as thermal power conservation modeling to improve power extraction from solar power plant. Many researchers have been already designed and developed different methods to extract maximum power while there were very researches are available on improving solar power thermally and mechanically. Thermal parameters are also important while discussing about maximizing power extraction of any power plant. A specific type of coolant which have very high boiling point is proposed to be use at the bottom surface of solar panel to reduce the temperature of panel in summer. A comparison between different maximum power point tracking (MPPT) technique and proposed MPPT technique is performed. Using this proposed Thermo-electrical MPPT (TE-MPPT) with Deep Learning Algorithm model 40% power is conserved as compared to traditional solar power system models.

Unbounded Binary Search Method for Fast-tracking Maximum Power Point of Photovoltaic Modules

  • Hong, Yohan;Kim, Yong Sin;Baek, Kwang-Hyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.454-461
    • /
    • 2016
  • A maximum power point tracking (MPPT) system with fast-tracked time and high power efficiency is presented in this paper. The proposed MPPT system uses an unbounded binary search (UBS) algorithm that continuously tracks the maximum power point (MPP) with a binary system to follow the MPP under rapid-weather-change conditions. The proposed algorithm can decide the correct direction of the MPPT system while comparing the previous power point with the present power point. And then, by fixing the MPP until finding the next MPP, there is no oscillation of voltage MPP, which maximizes the overall power efficiency of the photovoltaic module. With these advantages, this proposed UBS is able to detect the MPP more effectively. This MPPT system is based on a boost converter with a micro-control unit to control analog-to-digital converters and pulse width modulation. Analysis of this work and experimental results show that the proposed UBS MPPT provides fast, accurate tracking with no oscillation in situations where weather rapidly changes and shadow is caused by all sorts of things. The tracking time is reduced by 87.3% and 66.1% under dynamic-state and steady-state operation, respectively, as compared with the conventional 7-bit perturb and observe technique.