• 제목/요약/키워드: MPC control

검색결과 178건 처리시간 0.185초

연료전지 시스템을 위한 헤머스테인-위너 모델기반의 모델예측제어 (Hammerstein-Wiener Model based Model Predictive Control for Fuel Cell Systems)

  • 이상문
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.383-388
    • /
    • 2011
  • In this paper, we consider Hammerstein-Wiener nonlinear model for solid oxide fuel cell (SOFC). A nonlinear model predictive control (MPC) is proposed to trace the constant stack terminal power by Hydrogen flow as control input. After the stability of the closed-loop system with static output feedback controller is analysed by Lyapunov method, a nonlinear model predictive control based on the Hammerstein-Wiener model is developed to control the stack terminal power of the SOFC system. Simulation results verify the effectiveness of the proposed control method based on the Hammerstein-Wiener model for SOFC system.

Optimal deep machine learning framework for vibration mitigation of seismically-excited uncertain building structures

  • Afshin Bahrami Rad;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.535-549
    • /
    • 2023
  • Deep extreme learning machine (DELM) and multi-verse optimization algorithms (MVO) are hybridized for designing an optimal and adaptive control framework for uncertain buildings. In this approach, first, a robust model predictive control (RMPC) scheme is developed to handle the problem uncertainty. The optimality and adaptivity of the proposed controller are provided by the optimal determination of the tunning weights of the linear programming (LP) cost function for clustered external loads using the MVO. The final control policy is achieved by collecting the clustered data and training them by DELM. The efficiency of the introduced control scheme is demonstrated by the numerical simulation of a ten-story benchmark building subjected to earthquake excitations. The results represent the capability of the proposed framework compared to robust MPC (RMPC), conventional MPC (CMPC), and conventional DELM algorithms in structural motion control.

양자화 입력을 고려한 연속시간 T-S 퍼지 시스템을 위한 이벤트 트리거 모델예측제어 (Event-Triggered Model Predictive Control for Continuous T-S fuzzy Systems with Input Quantization)

  • 권우경;이상문
    • 전기학회논문지
    • /
    • 제66권9호
    • /
    • pp.1364-1372
    • /
    • 2017
  • In this paper, a problem of event-triggered model predictive control is investigated for continuous-time Takagi-Sugeno (T-S) fuzzy systems with input quantization. To efficiently utilize network resources, event-trigger is employed, which transmits limited signals satisfying the condition that the measurement of errors is over the ratio of a certain level. Considering sampling and quantization, continuous Takagi-Sugeno (T-S) fuzzy systems are regarded as a sector bounded continuous-time T-S fuzzy systems with input delay. Then, a model predictive controller (MPC) based on parallel distributed compensation (PDC) is designed to optimally stabilize the closed loop systems. The proposed MPC optimize the objective function over infinite horizon, which can be easily calculated and implemented solving linear matrix inequalities (LMIs) for every event-triggered time. The validity and effectiveness are shown that the event triggered MPC can stabilize well the systems with even smaller average sampling rate and limited actuator signal guaranteeing optimal performances through the numerical example.

Cascaded H-Bridge 멀티레벨 인버터를 위한 개선된 모델 예측 제어 방법 (Improved Model Predictive Control Method for Cascaded H-Bridge Multilevel Inverters)

  • 노찬;김재창;곽상신
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.846-853
    • /
    • 2018
  • In this paper, an improved model predictive control (MPC) method is proposed, which reduces the amount of calculations caused by the increased number of candidate voltage vectors with the increased voltage level in multi-level inverters. When the conventional MPC method is used for multi-level inverters, all candidate voltage vectors are considered to predict the next-step current value. However, in the case that the sampling time is short, increased voltage level makes it difficult to consider the all candidate voltage vectors. In this paper, the improved MPC method which can get a fast transient response is proposed with a small amount of the computation by adding new candidate voltage vectors that are set to find the optimal vector. As a result, the proposed method shows faster transient response than the method that considers the adjacent vectors and reduces the computational burden compared to the method that considers the whole voltage vector. the performance of the proposed method is verified through simulations and experiments.

전압원 인버터의 모델 예측 제어에서 스위칭 손실을 줄이기 위한 최적의 제로 벡터 선택 방법 (Optimal Zero Vector Selecting Method to Reduce Switching Loss on Model Predictive Control of VSI)

  • 박준철;박찬배;백제훈;곽상신
    • 전력전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.273-279
    • /
    • 2015
  • A zero vector selection method to reduce switching losses for model predictive control (MPC) of voltage source inverter is proposed. A conventional MPC of voltage source inverter has not been proposed, and a method to select the redundancy of the zero vector is required for this study. In this paper, the redundancy of the zero vectors is selected with generating a zero sequence voltage to reduce switching losses. The zero vector of 2-level inverter is determined by determining sign of the zero sequence voltage. In the proposed method, the quality of the current is retained and switching loss can be reduced compared with the conventional method. This result was verified by P-sim simulation and experiments.

An Approach for Identifying the Temperature of Inductance Motors by Estimating the Rotor Slot Harmonic Based on Model Predictive Control

  • Wang, Liguo;Jiang, Qingyue;Zhang, Chaoyu;Jin, Dongxin;Deng, Hui
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.695-703
    • /
    • 2017
  • In order to satisfy the urgent requirements for the overheating protection of induction motors, an approach that can be used to identify motor temperature has been proposed based on the rotor slots harmonic (RSH) in this paper. One method to accomplish this is to improve the calculation efficiency of the RSH by predicting the stator winding distribution harmonic order by analyzing the harmonics spectrum. Another approach is to increase the identification accuracy of the RSH by suppressing the influence of voltage flashes or current surges during temperature estimation based on model predictive control (MPC). First, an analytical expression of the stator inductance is extracted from a steady-state positive sequence motor equivalent circuit model developed from the rotor flux field orientation. Then a procedure that applies MPC for reducing the identification error of the rotor temperature caused by voltage sag or swell of the power system is given. Due to this work, the efficiency and accuracy of the RSH have been significantly improved and validated our experiments. This work can serves as a reference for the on-line temperature monitoring and overheating protection of an induction motor.

2축식 드론 추적 로봇의 제어기 설계 및 선정 방안 연구 (Study on the Design and Selection of Controller for Two Axial Drone Tracking Robot)

  • 박승운;김보겸;박창대;임현준;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권3호
    • /
    • pp.28-35
    • /
    • 2024
  • This study compared performances of PID (Proportional Integral Derivative), SMC (Sliding Mode Control), and MPC (Model Predictive Control) strategies applied to a 2DOF (Degree Of Freedom) drone tracking robot. The developed 2DOF robot utilized a depth camera with an IMU (Inertial Measurement Unit), laser pointers, and servo motors to rapidly detect and track objects. Image processing was conducted using the YOLO deep learning model. Through this setup, controllers were attached to the robot to track random drone movements, comparing performances in terms of accuracy and energy consumption. This study revealed that while SMC demonstrated precise tracking without deviating from the path, both PID and MPC controllers showed deviations. Performance-wise, SMC is superior. However, considering economic aspects, PID is more advantageous due to its lower power consumption and relatively minor tracking errors.

Nonparametric Nonlinear Model Predictive Control

  • Kashiwagi, Hiroshi;Li, Yun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1443-1448
    • /
    • 2003
  • Model Predictive Control (MPC) has recently found wide acceptance in industrial applications, but its potential has been much impounded by linear models due to the lack of a similarly accepted nonlinear modelling or data based technique. The authors have recently developed a new method for obtaining Volterra kernels of up to third order by use of pseudorandom M-sequence. By use of this method, nonparametric NMPC is derived in discrete-time using multi-dimensional convolution between plant data and Volterra kernel measurements. This approach is applied to an industrial polymerisation process using Volterra kernels of up to the third order. Results show that the nonparametric approach is very efficient and effective and considerably outperforms existing methods, while retaining the original data-based spirit and characteristics of linear MPC.

  • PDF

A Study of Performance Monitoring and Diagnosis Method for Multivariable MPC Systems

  • Lee, Seung-Yong;Youm, Seung-Hun;Lee, Kwang-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2612-2616
    • /
    • 2003
  • Method for performance monitoring and diagnosis of a MIMO control system has been studied aiming at application to model predictive control (MPC) for industrial processes. The performance monitoring part is designed on the basis of the traditional SPC/SQC method. To meet the underlying premise of Schwart chart observation that the observed variable should be univariate and independent, the process variables are decorrelated temporally as well as spatially before monitoring. The diagnosis part was designed to identify the root of performance degradation among the controller, process, and disturbance. For this, a method to estimate the model-error and disturbance signal has been devised. The proposed methods were evaluated through numerical examples.

  • PDF

Integrating Fuzzy based Fault diagnosis with Constrained Model Predictive Control for Industrial Applications

  • Mani, Geetha;Sivaraman, Natarajan
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.886-889
    • /
    • 2017
  • An active Fault Tolerant Model Predictive Control (FTMPC) using Fuzzy scheduler is developed. Fault tolerant Control (FTC) system stages are broadly classified into two namely Fault Detection and Isolation (FDI) and fault accommodation. Basically, the faults are identified by means of state estimation techniques. Then using the decision based approach it is isolated. This is usually performed using soft computing techniques. Fuzzy Decision Making (FDM) system classifies the faults. After identification and classification of the faults, the model is selected by using the information obtained from FDI. Then this model is fed into FTC in the form of MPC scheme by Takagi-Sugeno Fuzzy scheduler. The Fault tolerance is performed by switching the appropriate model for each identified faults. Thus by incorporating the fuzzy scheduled based FTC it becomes more efficient. The system will be thereafter able to detect the faults, isolate it and also able to accommodate the faults in the sensors and actuators of the Continuous Stirred Tank Reactor (CSTR) process while the conventional MPC does not have the ability to perform it.