• Title/Summary/Keyword: MOLECULAR WEIGHT

Search Result 5,158, Processing Time 0.033 seconds

Assessment of testicular steroidogenic enzymes expression in experimental animal model following withdrawal of nandrolone decanoate

  • Min, TaeSun;Karthikeyan, Adhimoolam;Lee, Ki-Ho
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1247-1264
    • /
    • 2021
  • Anabolic steroids are frequently used to increase the growth rate of meat-producing animals. Exposure to an anabolic-androgenic steroid, nandrolone decanoate (ND), is associated with expressional reduction of testicular steroidogenic enzymes. However, the effect of withdrawal of ND exposure on the expression of these testicular molecules has not been thoroughly explored. The current research investigated expression changes of testicular steroidogenic enzymes in rats at several recovery periods (2, 6, and 12 weeks) after the stop of ND treatment with different doses (2 and 10 mg/kg body weight) for 12 weeks. Body and testis weights were recorded, and transcript levels of molecules were determined by quantitative real-time polymerase chain reaction (PCR). The immunohistochemistry was used to examine the changes of immuno-intensities of molecules. At 6 and 12 weeks of the recovery period, the 10 mg/kg ND-treated rats were lighter than other experimental groups. The interstitial compartment vanished by ND treatment filled up as the recovery period became longer. The expression of steroidogenic acute regulatory protein was returned to the control level at 12 weeks of the recovery period. Expression levels of cytochrome P450 side-chain cleavage and 17a-hydroxylase were increased in 2 mg/kg ND-treated group at 6 weeks of the recovery period, and transcript levels of these molecules in 2 and 10 mg/kg ND-treated groups at 12 weeks of the recovery period were significantly lower than the control. Expression levels of 3β-hydroxysteroid dehydrogenase (HSD) type I and 17β-HSD type 3 in 2 mg/kg ND-treated group were comparable with those of control at 12 weeks of the recovery period, but not in 10 mg/kg ND-treated group. Expression of cytochrome P450 aromatase (Cyp19) was reverted to the control level at 2 weeks of the recovery period. Except for Cyp19, there was a visible increase of immuno-staining intensity of other testicular steroidogenic enzymes in the Leydig cells as the recovery period progressed. This research has demonstrated that the cease of ND administration could restore the expression of testicular steroidogenic enzymes close to the normal level. Nevertheless, a relatively long recovery period, compared to the ND-exposure period would be required to retrieve normal expression levels of testicular steroidogenic enzymes.

Potential of Fucoidan Extracted from Seaweeds as an Adjuvant for Fish Vaccine (해조류 유래 Fucoidan의 어류용 백신 항원보조제로서의 가능성에 대한 고찰)

  • Min, Eun Young;Kim, Kwang Il;Cho, Mi Young;Jung, Sung-Hee;Han, Hyun-Ja
    • Journal of Marine Life Science
    • /
    • v.4 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • Fucoidan is a physiologically functional ingredient extracted from seaweed brown algae, which is a sulfated polysaccharide containing fucose as a main molecule backbone. Fucoidan has a variety of immune-modulating or -stimulating effects, including promoting antigen uptake and enhancing anti-bacterial, anti-viral and anti-tumor effects. In addition, recent studies have suggested the possibility of use of fucoidan as a vaccine adjuvant in the field of human vaccine. Use of fucoidan as supplementary feeds have already been studied, but the development of fucoidan as an adjuvant of fish vaccine is still premature. However, the intracellular uptake of fucoidan differs depending on the molecular weight of fucoidan, and there is a limit to the study on specific immune response including the production of antibodies to fish caused by an artificial infection of pathogen. Although the safety of fucoidan has been demonstrated in animal cells, there is a need to confirm the safety of fucoidan in fish. Therefore, active research in this field is needed to use fucoidan as a vaccine adjuvant. This study discussed the effects of fucoidan on immune stimulation, humoraland cellular- immunity including humans and animals. The prospect of fucoidan as a vaccine adjuvant in fisheries also reviewed.

Isolation and Characterization of a Novel Bacterium Burkholderia gladioli Bsp-1 Producing Alkaline Lipase

  • Zhu, Jing;Liu, Yanjing;Yanqin, Yanqin;Pan, Lixia;Li, Yi;Liang, Ge;Wang, Qingyan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1043-1052
    • /
    • 2019
  • Active lipase-producing bacterium Burkholderia gladioli Bps-1 was rapidly isolated using a modified trypan blue and tetracycline, ampicillin plate. The electro-phoretically pure enzyme was obtained by purification using ethanol precipitation, ion-exchange chromatography, and gel filtration chromatography. The molecular weight was 34.6 kDa and the specific activity was determined to be 443.9 U/mg. The purified lipase showed the highest activity after hydrolysis with $p-NPC_{16}$ at a pH of 8.5 and $50^{\circ}C$, and the $K_m$, $k_{cat}$, and $k_{cat}/K_m$ values were 1.05 mM, $292.95s^{-1}$ and $279s^{-1}mM^{-1}$, respectively. The lipase was highly stable at $7.5{\leq}pH{\leq}10.0$. $K^+$ and $Na^+$ exerted activation effects on the lipase which had favorable tolerance to short-chain alcohols with its residual enzyme activity being 110% after being maintained in 30% ethanol for 1 h. The results demonstrated that the lipase produced by the strain B. gladioli Bps-1 has high enzyme activity and is an alkaline lipase. The lipase has promising chemical properties for a range of applications in the food-processing and detergent industries, and has particularly high potential for use in the manufacture of biodiesel.

Synthesis and Characterization of Alkoxy and Alkylamino GAP Copolymer for Energetic Thermoplastic Elastomer (ETPE) (에너지화 열가소성 탄성체에 사용될 수 있는 알콕시 계열과 알킬 아민 계열 GAP Copolymer의 합성 및 분석)

  • Lim, Minkyung;Jang, Yoorim;Kim, Hancheul;Rhee, Hakjune;Noh, Sitae
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.81-87
    • /
    • 2019
  • In this study, synthetic methods and physical properties for a new class of glycidyl azide polymer (GAP) were investigated for energetic thermoplastic elastomers (ETPE). Four kinds of GAP copolymer polyols were synthesized by introducing nucleophiles such as azide, alkoxide and alkyl amine into poly(epichlorohydrin) (PECH). The GAP copolymer synthetic reaction can be evaluated as an environmental benign and efficient synthetic method due to the simultaneous one-step reaction using two kinds of nucleophiles and the complete consumption of sodium azide. The relative stoichiometric substitution ratio analysis and the progress of reaction were checked and monitored by inverse gated decoupled $^{13}C$ NMR and Fourier transform infrared (FT-IR) spectroscopy. The glass transition temperature and molecular weight were measured by differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) analysis. The synthesized poly($GA_{0.8}-butoxide_{0.2}$), poly($GA_{0.7}-n-butylamine_{0.3}$), poly($GA_{0.7}-dipropylamine_{0.3}$) and poly($GA_{0.7}-morpholine_{0.3}$) had a glass transition temperature ranged from -39 to $-26^{\circ}C$.

Evaluation of in vitro anti-oxidant and anti-inflammatory activities of Korean and Chinese Lonicera caerulea

  • Lee, You-Suk;Cho, Il Je;Kim, Joo Wan;Lee, Sun-Kyoung;Ku, Sae Kwang;Lee, Hae-Jeung
    • Nutrition Research and Practice
    • /
    • v.12 no.6
    • /
    • pp.486-493
    • /
    • 2018
  • BACKGROUND/OBJECTIVE: The honeysuckle berry (HB) contains ascorbic acid and phenolic components, especially anthocyanins, flavonoids, and low-molecular-weight phenolic acids. In order to examine the potential of HB as a hepatoprotective medicinal food, we evaluated the in vitro anti-oxidant and anti-inflammatory activities of Korean HB (HBK) and Chinese HB (HBC). MATERIALS/METHODS: Antioxidant and anti-inflammatory effects of the extracts were examined in HepG2 and RAW 264.7 cells, respectively. The anti-oxidant capacity was determined by DPPH, SOD, CAT, and ARE luciferase activities. The production of nitric oxide (NO) as an inflammatory marker was also evaluated. The Nrf2-mediated mRNA levels of heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase [quinone] 1 (Nqo1), and glutamate-cysteine ligase catalytic subunit (Gclc) were measured. The concentrations of HB extracts used were 3, 10, 30, 100, and $300{\mu}g/mL$. RESULTS: The radical scavenging activity of all HB extracts increased in a concentration-dependent manner (P < 0.01 or P < 0.05). SOD (P < 0.05) and CAT (P < 0.01) activities were increased by treatment with $300{\mu}g/mL$ of each HB extract, when compared to those in the control. NO production was observed in cells pretreated with 100 or $300{\mu}g/mL$ of HBC and HBK (P < 0.01). Treatment with $300{\mu}g/mL$ of HBC significantly increased Nqo1 (P < 0.01) and Gclc (P < 0.05) mRNA levels compared to those in the control. Treatment with $300{\mu}g/mL$ of HBK (P < 0.05) and HBC (P < 0.01) also significantly increased the HO-1 mRNA level compared to that in the control. CONCLUSIONS: Thus, the Korean and Chinese HBs were found to possess favorable in vitro anti-oxidant and anti-inflammatory activities. Nrf2 and its related anti-oxidant genes were associated with both anti-oxidant and anti-inflammatory activities in HB-treated cells. Further studies are needed to confirm these in vivo effects.

Isolation and Identification of Pheophytin, a Photosensitizer from Nostoc commune that Induces Apoptosis in Leukemia and Cancer Cells (Nostoc commune으로부터 백혈병세포와 간암세포에 대한 apoptosis 유도 광과민성물질 pheophytin a의 분리 및 구조동정)

  • Park, Jae-Eun;Lee, Jun-Young;Lee, Min-Woo;Jang, Eun-Jin;Hong, Chang-Oh;Kim, Keun Ki
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1321-1331
    • /
    • 2018
  • The aim of this study was to separate the photosensitizer that induces apoptosis of U937 and SK-HEP-1 cells from Nostoc commune. Dried N. commune was extracted with $CH_2Cl_2/MeOH$ (1:1) to separate the photosensitizer using various chromatographic techniques. The isolated compound was identified as pheophytin a ($C_{55}H_{74}N_4O_5$) with a molecular weight of 870. Its photodynamic activities were assessed under different irradiation conditions (light and non-light) at the same concentration range of $1.15-23.0{\mu}M$. The apoptosis inducing activity in U937 or SK-HEP-1 cells appeared only in the light. The mechanisms underlying the pheophytin a-mediated photodynamic inhibition of cancer cells were further investigated by examining cell morphology changes, cytotoxicity, caspase-3/7 activity, fluorescence staining, flow cytometry analysis, and DNA fragmentation in these two cell lines. The positive control and the light irradiation group showed typical apoptotic responses, including morphological changes, cytotoxicity, caspase activity, nucleus shrinkage owing to chromatin condensation, DNA laddering, and the presence of apoptotic bodies. Cytotoxicity markedly increased in a dose-dependent manner after a 12 hr exposure. Caspase-3/7 activity was higher in U937 cells than in SK-HEP-1 cells. Apoptosis induction therefore appeared to be both concentration- and light-dependent. In conclusion, pheophytin a, isolated from the blue green alga N. commune, had a photodynamic apoptosis-inducing effect on U937 and SK-HEP-1 cells. The findings reported here can be used as basic data for the development of next-generation photosensitizers from N. commune.

Purification of Alginate Lyase from Streptomyces violaceoruber and the Growth Activity of Intestinal Bacteria by Degree of Polymerization of Alginate Hydrolysates (Streptomyces violaceoruber 유래 Alginate Lyase의 정제 및 Sodium Alginate 가수분해 올리고당의 중합도별 Bifidobacterium spp.과 Lactobacillus spp.에 대한 생육활성)

  • Yoon, Min;Park, Young-Seo;Park, Gwi-Gun
    • Food Engineering Progress
    • /
    • v.21 no.2
    • /
    • pp.103-109
    • /
    • 2017
  • Alginate lyase from Streptomyces violaceoruber was purified by DEAE sephacel chromatography and SP sepharose chromatography. The specific activity of the purified enzyme was 14.6 units/mg protein, representing a 40.6-fold purification of the crude extract. The final preparation thus obtained showed a single band on Tricine-SDS polyacrylamide gel electrophoresis whose molecular weight was determined to be 23.3 kDa. The polyMG block of sodium alginate was hydrolyzed by the purified alginate lyase and then separated by activated carbon column chromatography and bio gel P-2 gel filtration. The main hydrolysates were composed of hetero type M/G-oligosaccharides with the degrees of polymerization (D.P.) being 6 and 8. To investigate the effects of hetero type M/G-oligosaccharides from the sodium alginate on the growth of some intestinal bacteria, cells were cultivated individually on the modified-MRS medium containing D.P. 6 and 8 M/G-oligosaccharides. B. longumgrew 4.25-fold and 6.44-fold more effectively by the treatment of D.P. 6 and 8 M/G-oligosaccharides compared with those of standard MRS medium. In addition, B. bifidumgrew 3.3-fold and 5.4-fold more effectively by the treatment of D.P. 6 and 8 M/G-oligosaccharides. In conclusion, D.P. 8 was more effective than D.P. 6 hetero M/G-oligosaccharides as regards the growth of Bifidobacteriumspp. and Lactobacillus spp.

LncRNA MALAT1 Depressed Chemo-Sensitivity of NSCLC Cells through Directly Functioning on miR-197-3p/p120 Catenin Axis

  • Yang, Tian;Li, Hong;Chen, Tianjun;Ren, Hui;Shi, Puyu;Chen, Mingwei
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.270-283
    • /
    • 2019
  • This study was aimed to explore if lncRNA MALAT1 would modify chemo-resistance of non-small cell lung cancer (NSCLC) cells by regulating miR-197-3p and p120 catenin (p120-ctn). Within this investigation, we totally recruited 326 lung cancer patients, and purchased 4 NSCLC cell lines of A549, H1299, SPC-A-1 and H460. Moreover, cisplatin, adriamycin, gefitinib and paclitaxel were arranged as chemotherapies, and half maximal inhibitory concentration (IC50) values were calculated to evaluate the chemo-resistance of the cells. Furthermore, mice models of NSCLC were also established to assess the impacts of MALAT1, miR-197-3p and p120-ctn on tumor growth. Our results indicated that MALAT1 and miR-197-3p were both over-expressed within NSCLC tissues and cells, when compared with normal tissues and cells (P < 0.05). The A549, H460, SPC-A-1 and SPC-A-1 displayed maximum resistances to cisplatin ($IC50=15.70{\mu}g/ml$), adriamycin ($IC50=5.58{\mu}g/ml$), gefitinib ($96.82{\mu}mol/L$) and paclitaxel (141.97 nmol/L). Over-expression of MALAT1 and miR-197-3p, or under-expression of p120-ctn were associated with promoted viability and growth of the cancer cells (P < 0.05), and they could significantly strengthen the chemo-resistance of cancer cells (P < 0.05). MALAT1 Wt or p120-ctn Wt co-transfected with miR-197-3p mimic was observed with significantly reduced luciferase activity within NSCLC cells (P < 0.05). Finally, the NSCLC mice models were observed with larger tumor size and weight under circumstances of over-expressed MALAT1 and miR-197-3p, or under-expressed p120-ctn (P < 0.05). In conclusion, MALAT1 could alter chemo-resistance of NSCLC cells by targeting miR-197-3p and regulating p120-ctn expression, which might assist in improvement of chemo-therapies for NSCLC.

Fabrication of Polymeric Blend Membranes Using PBEM-POEM Comb Copolymer and Poly(ethylene glycol) for CO2 Capture (PBEM-POEM 공중합체와 Poly(ethylene glycol)의 폴리머 블렌드를 이용한 이산화탄소 분리막 제조)

  • Moon, Seung Jae;Min, Hyo Jun;Kim, Na Un;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.4
    • /
    • pp.223-230
    • /
    • 2019
  • In this paper, we develop a polymeric blend membrane based on $CO_2$-philic poly(2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate)-poly(oxyethylene methacrylate) (PBEM-POEM) comb copolymer, which was synthesized by facile free radical polymerization. The PBEM-POEM (PBE) comb copolymer was blended with a commercial oligomer, low-molecular-weight poly(ethylene glycol) (PEG, $M_w=200gmol^{-1}$) with various ratios to prepare $CO_2/N_2$ separation membranes. From the result of $CO_2/N_2$ separation test of the PBE/PEG blend membranes with the various PEG contents, we could conclude that with increasing PEG content, the $CO_2/N_2$ selectivity significantly increased while the CO2 permeability decreased showing trade-off relationship. However, when comparing the performance of the PBE/PEG (9 : 1) with the PBE/PEG (7 : 3) membrane, the $CO_2$ permeance decreased by only 8.3%, while the $N_2$ permeance decreased by 69.1%. Therefore, the $CO_2/N_2$ selectivity dramatically increased from 33.8 to 100.3. This could be because the POEM chains, which account for 80% of the PBE copolymer, favorably interact with PEG and lead to a more compact chain structure, which was confirmed by FT-IR, XRD and SEM analysis. The PBE/PEG (7 : 3) blend membrane had the most optimal gas separation performance, showing a $CO_2$ permeance of 170.5 GPU and $CO_2/N_2$ selectivity of 100.3.

Development of Anion Exchange Membrane based on Crosslinked Poly(2,6-dimethyl-1,4-phenylene oxide) for Alkaline Fuel Cell Application (화학적 가교를 이용한 Poly(2,6-dimethyl-1,4-phenylene oxde)계 음이온 교환막의 제조 및 알칼리 연료전지용 특성평가)

  • Sung, Seounghwa;Lee, Boryeon;Choi, Ook;Kim, Tae-Hyun
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.173-182
    • /
    • 2019
  • Much research has been made for finding new and eco-friendly alternative sources of energy to solve the problems related with the pollution caused by emissions of greenhouse gases such as carbon dioxide as the use of fossil fuels increases worldwide. Among them, fuel cells draws particular interests as an eco-friendly energy generator because only water is obtained as a by-product. Anion exchange membrane-based alkaline fuel cell (AEMFC) that uses anion exchange membrane as an electrolyte is of increased interest recently because of its advantages in using low-cost metal catalyst unlike the PEMFC (potton exchange membrane fuel cell) due to the high-catalyst activity in alkaline conditions. The main properties required as an anion exchange membrane are high hydroxide conductivity and chemical stability at high pH. Recently we reported a chemically crosslinked poly(2-dimethyl-1,4-phenylene oxide) (PPO) by reacting PPO with N,N,N',N'-tetramethyl-1,6-hexanediamine as novel anion exchange membranes. In the current work, we further developed the same crosslinked polymer but having enhanced physicochemical properties, including higher conductivity, increased mechanical and dimensional stabilities by using the PPO with a higher molecular weight and also by increasing the crosslinking density. The obtained polymer membrane also showed a good cell performance.