Browse > Article
http://dx.doi.org/10.14478/ace.2018.1116

Synthesis and Characterization of Alkoxy and Alkylamino GAP Copolymer for Energetic Thermoplastic Elastomer (ETPE)  

Lim, Minkyung (Department of Bionanotechnology, Hanyang University)
Jang, Yoorim (Department of Bionanotechnology, Hanyang University)
Kim, Hancheul (Department of Bionanotechnology, Hanyang University)
Rhee, Hakjune (Department of Bionanotechnology, Hanyang University)
Noh, Sitae (Department of Materials and Chemical Engineering, Hanyang University)
Publication Information
Applied Chemistry for Engineering / v.30, no.1, 2019 , pp. 81-87 More about this Journal
Abstract
In this study, synthetic methods and physical properties for a new class of glycidyl azide polymer (GAP) were investigated for energetic thermoplastic elastomers (ETPE). Four kinds of GAP copolymer polyols were synthesized by introducing nucleophiles such as azide, alkoxide and alkyl amine into poly(epichlorohydrin) (PECH). The GAP copolymer synthetic reaction can be evaluated as an environmental benign and efficient synthetic method due to the simultaneous one-step reaction using two kinds of nucleophiles and the complete consumption of sodium azide. The relative stoichiometric substitution ratio analysis and the progress of reaction were checked and monitored by inverse gated decoupled $^{13}C$ NMR and Fourier transform infrared (FT-IR) spectroscopy. The glass transition temperature and molecular weight were measured by differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) analysis. The synthesized poly($GA_{0.8}-butoxide_{0.2}$), poly($GA_{0.7}-n-butylamine_{0.3}$), poly($GA_{0.7}-dipropylamine_{0.3}$) and poly($GA_{0.7}-morpholine_{0.3}$) had a glass transition temperature ranged from -39 to $-26^{\circ}C$.
Keywords
Solid propellant; Glycidyl azide polymer; Glycidyl azide polymer copolymer; Poly(epichlorohydrin); Energetic thermoplastic elastomer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Zhou, X.-P. Long, and Q.-X. Zeng, Simulation studies of the interfaces of incompatible glycidyl azide polymer/hydroxyl-terminated polybutadiene blends by dissipative particle dynamics. I. The effect of block copolymers and plasticizers, J. Appl. Polym. Sci., 125, 1530-1537 (2012).   DOI
2 Y. M. Mohan, Y. Mani, and K. M. Raju, Synthesis of azido polymers as potential energetic propellant binders, Des. Monomers Polym., 9, 201-236 (2006).   DOI
3 Y. M. Mohan, K. M. Raju, and B. Sreedhar, Synthesis and characterization of glycidyl azide polymer with enhanced azide content, Int. J. Polym. Mater., 55, 441-455 (2006).   DOI
4 M. Cappello, S. Filippi, L. Mori, and G. Polacco, Glycidyl azide-butadiene block copolymers: 2 Synthesis from a Mesylated Precursor, Propellants Explos. Pyrotechnics, 42, 974-981 (2017).   DOI
5 Y. M. Mohan, M. P. Raju, and K. M. Raju, Synthesis, spectral and DSC analysis of glycidyl azide polymers containing different initiating diol units, J. Appl. Polym. Sci., 93, 2157-2163 (2004).   DOI
6 I. K. Varma, High energy binders: glycidyl azide and allyl azide polymer, Macromol. Symp., 210, 121-129 (2004).   DOI
7 B. Gaur, B. Lochab, V. Choudhary, and I. K. Varma, Azido polymers-energetic binders for solid rocket propellants, J. Macro. Sci. C, C43, 505-545 (2003).
8 S. K. Sahu, S. P. Panda, D. S. Sadafule, C. G. Kumbhar, S. G. Kulkarni, and J. V. Thakur, Thermal and photodegradation of glycidyl azide polymers, Polym. Degrad. Stab., 62, 495-500 (1998).   DOI
9 J.-S. You and S.-T. Noh, Thermal and mechanical properties of poly(glycidyl azide)/polycaprolactone copolyol-based energetic thermoplastic polyurethanes, Macromol. Res., 18, 1081-1087 (2010).   DOI
10 A. M. Kawamoto, J. A. Saboia Holanda, U. Barbieri, G. Polacco, T. Keicher, H. Krause, and M. Kaiser, Synthesis and characterization of glycidyl azide-r-(3,3-bis(azidomethyl)oxetane) copolymers, Propellants Explos. Pyrotechnics, 33, 365-372 (2008).   DOI
11 J.-F. Pei, F.-Q. Zhao, X.-D. Song, X.-N. Ren, H.-X. Gao, T. An, J. An, and R.-Z. Hu, Effects of nano-CuO particles on thermal decomposition behavior and decomposition mechanism of BAMO-GAP copolymer, J. Anal. Appl. Pyrolysis, 112, 88-93 (2015).   DOI
12 Y. Zhang, J. Zhao, P. Yang, S. He, and H. Huang, Synthesis and characterization of energetic GAP-b-PAEMA block copolymer, Polym. Eng. Sci., 52, 768-773 (2012).   DOI
13 G. Li, H. Dong, M. Liu, M. Xia, C. Chai, and Y. Luo, Amphiphilic block copolymer poly(lactic acid)-block-(glycidylazide polymer)-block-polystyrene: synthesis and self-assembly, Polym. Int., 66, 1037-1043 (2017).   DOI
14 B. Li, Y. Zhao, G. Liu, X. Li, and Y. Luo, Mechanical properties and thermal decomposition of PBAMO/GAP random block ETPE, J. Therm. Anal. Calorim., 126, 717-724 (2016).   DOI
15 Y. M. Mohan and K. M. Raju, Synthesis and characterization of HTPB-GAP cross-linked co-polymers, Des. Monomers Polym., 8, 159-175 (2012).   DOI
16 S. Pisharath and H. G. Ang, Synthesis and thermal decomposition of GAP-Poly(BAMO) copolymer, Polym. Degrad. Stab., 92, 1365-1377 (2007).   DOI
17 B. S. Min and S. W. Ko, Characterization of segmented block copolyurethane network based on glycidyl azide polymer and polycaprolactone, Macromol. Res., 15, 225-233 (2007).   DOI
18 R. G. Stater and D. M. Husband, Molecular structure of the ideal solid propellant binder, Propellants Explos. Pyrotechnics, 16, 167-176 (1991).   DOI
19 Y. M. Mohan and K. M. Raju, Synthesis and characterization of GAP-THF copolymers, Int. J. Polym. Mater., 55, 203-217 (2006).   DOI
20 M. Xu, Z. Ge, X. Lu, H. Mo, Y. Ji, and H. Hu, Fluorinated glycidyl azide polymers as potential energetic binders, RSC Adv., 7, 47271-47278 (2017).   DOI
21 H. Kim, Y. Jang, S. Noh, J. Jeong, D. Kim, B. Kang, T. Kang, H. Choi, and H. Rhee, Ecofriendly synthesis and characterization of carboxylated GAP copolymers, RSC Adv., 8, 20032-20038 (2018).   DOI
22 M. Cao, T. Li, J. Liang, Z. Wu, X. Zhou, and G. Du, A $^{13}C$-NMR study on the 1,3-dimethylolurea-phenol co-condensation reaction: a model for amino-phenolic co-condensed resin synthesis, Polymers, 8, 391 (2016).   DOI
23 M. S. Eroglu and O. Guven, Characterization of network structure of poly(glycidyl azide) elastomers by swelling, solubility and mechanical measurements, Polymer, 39, 1173-1176 (1998).   DOI
24 J. Deng, G. Li, M. Xia, Y. Lan, and Y. Luo, Improvement of mechanical characteristics of glycidyl azide polymer binder system by addition of flexible polyether, J. Appl. Polym. Sci., 133, 43840 (2016).
25 E. Landsem, T. L. Jensen, F. K. Hansen, E. Unneberg, and T. E. Kristensen, Neutral polymeric bonding agents (NPBA) and their use in smokeless composite rocket propellants based on HMX-GAP-BuNENA, Propellants Explos. Pyrotechnics, 37, 581-591 (2012).   DOI
26 S. Filippi, L. Mori, M. Cappello, and G. Polacco, Glycidyl azide-butadiene block copolymers: synthesis from the homopolymers and a chain extender, Propellants Explos. Pyrotechnics, 42, 826-835 (2017).   DOI
27 Y. Wu, Y. Luo, and Z. Ge, Properties and application of a novel type of glycidyl azide polymer (GAP)-modified nitrocellulose powders, Propellants Explos. Pyrotechnics, 40, 67-73 (2015).   DOI
28 Z. Zhang, N. Luo, J. Deng, Z. Ge, and Y. Luo, A kind of bonding functional energetic thermoplastic elastomers based on glycidyl azide polymer, J. Elastomers Plast., 48, 728-738 (2016).   DOI
29 M. Perez, J. C. Ronda, J. A. Reina, and A. Serra, Studies on the microstructure of the polymer obtained by chemical modification of poly(oxy-1-chloromethyl-ethylene-co-oxyethylene) (PECH-PEO) with phenolate, Polymer, 41, 2349-2358 (2000).   DOI
30 Y. M. Mohan, M. P. Raju, and K. M. Raju, Synthesis and characterization of GAP-PEG copolymers, Int. J. Polym. Mater., 54, 651-666 (2005).   DOI