DOI QR코드

DOI QR Code

Isolation and Characterization of a Novel Bacterium Burkholderia gladioli Bsp-1 Producing Alkaline Lipase

  • Zhu, Jing (National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Biomass EngineeringTechnology Research Center, Guangxi Academy of Sciences) ;
  • Liu, Yanjing (Royal Group Co., Ltd.) ;
  • Yanqin, Yanqin (National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Biomass EngineeringTechnology Research Center, Guangxi Academy of Sciences) ;
  • Pan, Lixia (National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Biomass EngineeringTechnology Research Center, Guangxi Academy of Sciences) ;
  • Li, Yi (National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Biomass EngineeringTechnology Research Center, Guangxi Academy of Sciences) ;
  • Liang, Ge (National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Biomass EngineeringTechnology Research Center, Guangxi Academy of Sciences) ;
  • Wang, Qingyan (National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Biomass EngineeringTechnology Research Center, Guangxi Academy of Sciences)
  • Received : 2019.03.20
  • Accepted : 2019.06.20
  • Published : 2019.07.28

Abstract

Active lipase-producing bacterium Burkholderia gladioli Bps-1 was rapidly isolated using a modified trypan blue and tetracycline, ampicillin plate. The electro-phoretically pure enzyme was obtained by purification using ethanol precipitation, ion-exchange chromatography, and gel filtration chromatography. The molecular weight was 34.6 kDa and the specific activity was determined to be 443.9 U/mg. The purified lipase showed the highest activity after hydrolysis with $p-NPC_{16}$ at a pH of 8.5 and $50^{\circ}C$, and the $K_m$, $k_{cat}$, and $k_{cat}/K_m$ values were 1.05 mM, $292.95s^{-1}$ and $279s^{-1}mM^{-1}$, respectively. The lipase was highly stable at $7.5{\leq}pH{\leq}10.0$. $K^+$ and $Na^+$ exerted activation effects on the lipase which had favorable tolerance to short-chain alcohols with its residual enzyme activity being 110% after being maintained in 30% ethanol for 1 h. The results demonstrated that the lipase produced by the strain B. gladioli Bps-1 has high enzyme activity and is an alkaline lipase. The lipase has promising chemical properties for a range of applications in the food-processing and detergent industries, and has particularly high potential for use in the manufacture of biodiesel.

Keywords

References

  1. Contesini FJ, Lopes DB, Macedo GA, da Graca Nascimento M, de Oliveira Carvalho P. 2010. Aspergillus sp. lipase: potential biocatalyst for industrial use. J. Mol. Catal. B-Enzym. 67: 163-171. https://doi.org/10.1016/j.molcatb.2010.07.021
  2. Shu Z Y, Yang J K, Huang Y, Yan Y J. 2007. Resources and current state of lipases used in biodiesel production. Hubei Agric. Sci. 6: 64.
  3. Fojan P, Jonson PH, Petersen MTN, Petersen SB. 2000. What distinguishes an esterase from a lipase: A novel structural approach. Biochimie 82: 1033-1041. https://doi.org/10.1016/S0300-9084(00)01188-3
  4. Winkler FK, D'Arcy A, Hunziker W. 1990. Structure of human pancreatic lipase. Nature 343: 771-774. https://doi.org/10.1038/343771a0
  5. Zheng YY, Guo XH, Song NN, Li DC. 2011. Thermophilic lipase from Thermomyces lanuginosus : Gene cloning, expression and characterization. J. Mol. Catal. B Enzym. 69: 127-132. https://doi.org/10.1016/j.molcatb.2011.01.006
  6. Kohno M, Enatsu M, Funatsu J, Yoshiizumi M, Kugimiya W. 2001. Improvement of the optimum temperature of lipase activity for Rhizopus niveus by random mutagenesis and its structural interpretation. J. Biotechnol. 87: 203-210. https://doi.org/10.1016/S0168-1656(01)00243-7
  7. Jaeger KE, Ransac S, Dijkstra BW, Colson C, Van Heuvel M, Misset O. 1994. Bacterial lipases. FEMS Microbiol. Rev. 15: 29-63. https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
  8. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, et al. 1992. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol. 36: 1251-1275. https://doi.org/10.1111/j.1348-0421.1992.tb02129.x
  9. Yang W, He Y, Xu L, Zhang H, Yan Y. 2016. A new extracellular thermo-solvent-stable lipase from Burkholderia ubonensis SL-4: identification, characterization and application for biodiesel production. J. Mol. Catal. B Enzym. 126: 76-89. https://doi.org/10.1016/j.molcatb.2016.02.005
  10. Ungcharoenwiwat P, H-Kittikun A. 2015. Purification and characterization of lipase from Burkholderia sp. EQ3 isolated from wastewater from a canned fish factory and its application for the synthesis of wax esters. J. Mol. Catal. B Enzym. 115: 96-104. https://doi.org/10.1016/j.molcatb.2015.02.005
  11. Xie C, Wu B, Qin S, He B. 2016. A lipase with broad solvent stability from Burkholderia cepacia RQ3: isolation, characteristics and application for chiral resolution of 1-phenylethanol. Bioprocess Biosyst. Eng. 39: 59-66. https://doi.org/10.1007/s00449-015-1489-1
  12. Ling XM, Wang XY, Ma P, Yang Y, Qin JM, Zhang XJ, et al. 2016. Covalent immobilization of penicillin G acylase onto $Fe_3O_4@$ chitosan magnetic nanoparticles. J. Microbiol. Biotechnol. 26: 829-836. https://doi.org/10.4014/jmb.1511.11052
  13. Wang XY, Jiang XP, Li Y, Zeng S, Zhang YW. 2015. Preparation Fe3O4@ chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. Int. J. Biol. Macromol. 75: 44-50. https://doi.org/10.1016/j.ijbiomac.2015.01.020
  14. Xu M Q, Wang S S , Li L N,Gao J,Zhang Y W. 2018. Combined cross-linked enzyme aggregates as biocatalysts. Catalysts 8: 460. https://doi.org/10.3390/catal8100460
  15. Pencreac'h G, Baratti JC. 1997. Activity of Pseudomonas cepacia lipase in organic media is greatly enhanced after immobilization on a polypropylene support. Appl. Microbiol. Biotechnol. 47: 630-635. https://doi.org/10.1007/s002530050986
  16. Gupta N, Rathi P, Gupta R. 2002. Simplified para-nitrophenyl palmitate assay for lipases and esterases. Anal. Biochem. 311: 98-99. https://doi.org/10.1016/S0003-2697(02)00379-2
  17. Singh R, Gupta N, Goswami VK, Gupta R. 2006. A simple activity staining protocol for lipases and esterases. Appl. Microbiol. Biotechnol. 70: 679-682. https://doi.org/10.1007/s00253-005-0138-z
  18. Cao Y, Zhuang Y, Yao C, Wu B, He B. 2012. Purification and characterization of an organic solvent-stable lipase from Pseudomonas stutzeri LC2-8 and its application for efficient resolution of (R, S)-1-phenylethanol. Biochem. Eng. J. 64: 55-60. https://doi.org/10.1016/j.bej.2012.03.004
  19. Hagedorn C, Gould WD, Bardinelli TR, Gustavson DR. 1987. A selective medium for enumeration and recovery of Pseudomonas cepacia biotypes from soil. Appl. Environl Microbiol. 53: 2265-2268. https://doi.org/10.1128/AEM.53.9.2265-2268.1987
  20. Chakraborty K, Paulraj R. 2009. Purification and biochemical characterization of an extracellular lipase from Pseudomonas fluorescens MTCC 2421. J. Agric. Food Chem. 57: 3859. https://doi.org/10.1021/jf803797m
  21. Park DS, Oh HW, Heo SY, Jeong WJ, Shin DH, Bae KS, et al. 2007. Characterization of an extracellular lipase in Burkholderia sp. HY-10 isolated from a longicorn beetle. J. Microbiol. 45: 409.
  22. Wang HK, Liu RJ, Lu FP, Wei Q, Jing S, Ma HJ. 2009. A novel alkaline and low-temperature lipase of Burkholderia cepacia isolated from Bohai in China for detergent formulation. Ann. Microbiol. 59: 105-110. https://doi.org/10.1007/BF03175606
  23. Chaiyaso T, Seesuriyachan P, Zimmermann W, Hkittikun A. 2012. Purification and characterization of lipase from newly isolated Burkholderia multivorans PSU-AH130 and its application for biodiesel production. Ann. Microbiol. 62: 1615-1624. https://doi.org/10.1007/s13213-011-0418-z
  24. Lu Y, Lu F, Wang X, Bie X, Sun H, Wuyundalai, et al. 2009. Identification of bacteria producing a thermophilic lipase with positional non-specificity and characterization of the lipase. Ann. Microbiol. 59: 565-571. https://doi.org/10.1007/BF03175147
  25. Ji Q, Xiao S, BH Liu X. 2010. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LX1 and its application for biodiesel production. J. Mol. Catal. B Enzym. 66: 264-269. https://doi.org/10.1016/j.molcatb.2010.06.001
  26. Patel V, Nambiar S, Madamwar D. 2014. An extracellular solvent stable alkaline lipase from Pseudomonas sp. DMVR46: Partial purification, characterization and application in non-aqueous environment. Process Biochem. 49: 1673-1681. https://doi.org/10.1016/j.procbio.2014.06.007
  27. Aguilar C, Bertani I, Venturi V. 2003. Quorum-sensing system and stationary-phase sigma factor (rpoS) of the onion pathogen Burkholderia cepacia genomovar I type strain, ATCC 25416. Appl. Environ. Microbiol. 69: 1739-1747. https://doi.org/10.1128/AEM.69.3.1739-1747.2003
  28. Dandavate V, Jinjala J, Keharia H, Madamwar D. 2009. Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis. Bioresour. Technol. 100: 3374-3381. https://doi.org/10.1016/j.biortech.2009.02.011
  29. Rahman RN, Baharum SN, Basri M, Salleh AB. 2005. High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal. Biochem. 341: 267-274. https://doi.org/10.1016/j.ab.2005.03.006
  30. Snellman EA, Sullivan ER, Colwell RR. 2002. Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. Eur. J. Biochem. 269: 5771-5779. https://doi.org/10.1046/j.1432-1033.2002.03235.x
  31. Yu N, Yang Jc, Yin Gt, Li Rs, Zou Wt, He C. 2018. Identification and characterization of a novel esterase from Thauera sp. Biotechnol. Appl. Biochem. 65: 748-755. https://doi.org/10.1002/bab.1659
  32. Ai L, Huang Y, Wang C. 2018. Purification and characterization of halophilic lipase of Chromohalobacter sp. from ancient salt well. J. Basic Microbiol. 58: 647-657. https://doi.org/10.1002/jobm.201800116
  33. Wang Z, Lv P, Luo W, Yuan Z, He D. 2016. Expression in Pichia pastoris and characterization of Rhizomucor miehei lipases containing a new propeptide region. J. f Gen. Appl. Microbiol. 62: 25-30. https://doi.org/10.2323/jgam.62.25
  34. Bakir ZB, Metin K. 2016. Purification and characterization of an alkali-thermostable lipase from thermophilic Anoxybacillus flavithermus HBB 134. J. Microbiol. Biotechnol. 26: 1087-1097. https://doi.org/10.4014/jmb.1512.12056
  35. Jing Z, Yanjing L, Yan Q, Naikun S, Yi L, Ge L, et al. 2018. Optimization of a molasses based fermentation medium for lipases from Burkholderia sp. Bps1 based on response surface methodology. Food Sci. Technol. Res. 24: 757-765. https://doi.org/10.3136/fstr.24.757
  36. Shu ZY, Wu JG, Cheng LX, Chen D, Jiang YM, Li X, et al. 2012. Production and characteristics of the whole-cell lipase from organic solvent tolerant Burkholderia sp. ZYB002. Appl. Biochem. Biotechnol. 166: 536-548. https://doi.org/10.1007/s12010-011-9446-1
  37. Lee D, Koh Y, Kim K, Kim B, Choi H, Kim D, et al. 2005. Isolation and characterization of a thermophilic lipase from bacillus thermoleovorans ID-1. FEMS Microbiol. Lett. 13: 519-530.
  38. Tang L, Xia L. 2005. Purification and partial characterization of a lipase from Bacillus coagulans ZJU318. Appl. Biochem. Biotechnol. 125: 139-146. https://doi.org/10.1385/ABAB:125:2:139
  39. Ogino H, Watanabe F, Yamada M, Nakagawa S, Hirose T, Noguchi A, et al. 1999. Purification and characterization of organic solvent-stable protease from organic solvent-tolerant Pseudomonas aeruginosa PST-01. J. Biosci. Bioeng. 87: 61-68. https://doi.org/10.1016/S1389-1723(99)80009-7
  40. Shu ZY, Lin RF, Jiang H, Zhang YF, Wang MZ, Huang JZ. 2009. A rapid and efficient method for directed screening of lipase-producing Burkholderia cepacia complex strains with organic solvent tolerance from rhizosphere. J. Biosci. Bioeng. 107: 658-661. https://doi.org/10.1016/j.jbiosc.2009.01.011