• 제목/요약/키워드: MOLECULAR ECOLOGY

검색결과 342건 처리시간 0.029초

A Monoclonal Antibody That Specifically Binds Chitosan In Vitro and In Situ on Fungal Cell Walls

  • Schubert, Max;Agdour, Siham;Fischer, Rainer;Olbrich, Yvonne;Schinkel, Helga;Schillberg, Stefan
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권8호
    • /
    • pp.1179-1184
    • /
    • 2010
  • We report the generation of the first monoclonal antibody that specifically binds to the polysaccharide chitosan. Mice were immunized with a mixture of chitosans, and hybridoma clones were screened for specific binders, resulting in the isolation of a single clone secreting a chitosan-specific IgM, mAbG7. In ELISAs, the antibody could bind to chitosans of varying composition, but demonstrated the highest affinity for chitosans with lower degrees of acetylation (DA) and very poor binding to chitin. We tested the ability of the antibody to bind to chitosan in situ, using preparations of fungal cell walls. Immunofluorescence microscopy confirmed that the antibody bound strongly to the cell walls of fungi with high levels of chitosan, whereas poor staining was observed in those species with cell walls of predominantly chitin or cellulose. The potential use of this antibody for the detection of fungal contamination and the protection of plants against fungal pathogens is discussed.

Next-generation approaches to the microbial ecology of food fermentations

  • Bokulich, Nicholas A.;Mills, David A.
    • BMB Reports
    • /
    • 제45권7호
    • /
    • pp.377-389
    • /
    • 2012
  • Food fermentations have enhanced human health since the dawn of time and remain a prevalent means of food processing and preservation. Due to their cultural and nutritional importance, many of these foods have been studied in detail using molecular tools, leading to enhancements in quality and safety. Furthermore, recent advances in high-throughput sequencing technology are revolutionizing the study of food microbial ecology, deepening insight into complex fermentation systems. This review provides insight into novel applications of select molecular techniques, particularly next-generation sequencing technology, for analysis of microbial communities in fermented foods. We present a guideline for integrated molecular analysis of food microbial ecology and a starting point for implementing next-generation analysis of food systems.

Training Molecularly Enabled Field Biologists to Understand Organism-Level Gene Function

  • Kang, Jin-Ho;Baldwin, Ian T.
    • Molecules and Cells
    • /
    • 제26권1호
    • /
    • pp.1-4
    • /
    • 2008
  • A gene's influence on an organism's Darwinian fitness ultimately determines whether it will be lost, maintained or modified by natural selection, yet biologists have few gene expression systems in which to measure whole-organism gene function. In the Department of Molecular Ecology at the Max Planck Institute for Chemical Ecology we are training "molecularly enabled field biologists" to use transformed plants silenced in the expression of environmentally regulated genes and the plant's native habitats as "laboratories." Research done in these natural laboratories will, we hope, increase our understanding of the function of genes at the level of the organism. Examples of the role of threonine deaminase and RNA-directed RNA polymerases illustrate the process.

Phylogenetic and Morphological Characterization of Cladosporium perangustum Associated with Flyspeck on Shine Muscat Grapes in South Korea

  • Hassan, Oliul;Lim, Yang-Sook;Chang, Taehyun
    • Mycobiology
    • /
    • 제49권2호
    • /
    • pp.183-187
    • /
    • 2021
  • The Shine Muscat is a table grape, popular in South Korea for its unique mango-flavor taste. Flyspeck is a disease that is characterized by small, black, and circular specks on the grape cuticle was first observed in several commercial orchards in Sangju, South Korea, in August 2019. Here we identified the causal agent of flyspeck based on an advanced diagnosis approach, comprised of both morphological and molecular analyses. Morphological characteristics of the cultures isolated from grape flyspeck were identical to the fungus Cladosporium perangustum. The concatenated sequences of ITS, ACT, and EF1-α were used for molecular phylogenetic analysis, BLAST searches along with Bayesian inference-based phylogeny, confirmed that the causal agent of grape flyspeck is C. perangustum. The cultured fungal isolates also produced flyspeck symptoms on healthy fruits in pathogenicity tests. To the best of my knowledge, this is the first documented evidence of any Cladosporium sp. producing flyspeck symptoms on any plant.

Fibrolytic Rumen Bacteria: Their Ecology and Functions

  • Koike, Satoshi;Kobayashi, Yasuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권1호
    • /
    • pp.131-138
    • /
    • 2009
  • Among rumen microbes, bacteria play important roles in the biological degradation of plant fiber due to their large biomass and high activity. To maximize the utilization of fiber components such as cellulose and hemicellulose by ruminant animals, the ecology and functions of rumen bacteria should be understood in detail. Recent genome sequencing analyses of representative fibrolytic bacterial species revealed that the number and variety of enzymes for plant fiber digestion clearly differ between Fibrobacter succinogenes and Ruminococcus flavefaciens. Therefore, the mechanism of plant fiber digestion is also thought to differ between these two species. Ecology of individual fibrolytic bacterial species has been investigated using pure cultures and electron microscopy. Recent advances in molecular biology techniques complement the disadvantages of conventional techniques and allow accurate evaluation of the ecology of specific bacteria in mixed culture, even in situ and in vivo. Molecular monitoring of fibrolytic bacterial species in the rumen indicated the predominance of F. succinogenes. Nutritive interactions between fibrolytic and non-fibrolytic bacteria are important in maintaining and promoting fibrolytic activity, mainly in terms of crossfeeding of metabolites. Recent 16S rDNA-based analyses suggest that presently recognized fibrolytic species such as F. succinogenes and two Ruminococcus species with fibrolytic activity may represent only a small proportion of the total fibrolytic population and that uncultured bacteria may be responsible for fiber digestion in the rumen. Therefore, characterization of these unidentified bacteria is important to fully understand the physiology and ecology of fiber digestion. To achieve this, a combination of conventional and modern techniques could be useful.

Coenurosis of Yak, Bos grunniens, caused by Taenia multiceps: A Case Report with Molecular Identification in Qinghai Tibetan Plateau Area, China

  • Zhang, Xue-Yong;Jian, Ying-Na;Duo, Hong;Shen, Xiu-Ying;Ma, Yi-Juan;Fu, Yong;Guo, Zhi-Hong
    • Parasites, Hosts and Diseases
    • /
    • 제57권4호
    • /
    • pp.423-427
    • /
    • 2019
  • Coenurosis is an important zoonotic helminthic disease caused by the larval stage of the tapeworm Taenia multiceps. This parasite typically infects the brain of the intermediate hosts, including sheep, goat, cattle and even humans. We report a case of T. multiceps infection in a yak confirmed by clinical symptoms, morphological characteristics, and molecular and phylogenetic analyses. The coenurus was thin-walled, whitish, and spherical in shape with a diameter of 10 cm. The parasite species was identified as T. multiceps by PCR amplification and sequencing of the 18S rRNA, cox1 and nad1 genes. Three gene sequences all showed high homology (all above 97%) with the reference sequences from different hosts. Moreover, phylogenetic reconstructions with the 3 published Taenia gene sequences confirmed that the Qinghai yak isolate was closely related to T. multiceps. Although there are advanced diagnosis and treatment methods for coenurosis, early infection is difficult to diagnose. Importantly, the findings of yak infection case should not be ignored due to its zoonotic potential.

Morphological and Molecular Characterization of Lymnaeid Snails and Their Potential Role in Transmission of Fasciola spp. in Vietnam

  • Dung, Bui Thi;Doanh, Pham Ngoc;The, Dang Tat;Loan, Ho Thi;Losson, Bertrand;Caron, Yannick
    • Parasites, Hosts and Diseases
    • /
    • 제51권6호
    • /
    • pp.657-662
    • /
    • 2013
  • Freshwater snails of the family Lymnaeidae play an important role in the transmission of fascioliasis worldwide. In Vietnam, 2 common lymnaeid species, Lymnaea swinhoei and Lymnaea viridis, can be recognized on the basis of morphology, and a third species, Lymnaea sp., is known to exist. Recent studies have raised controversy about their role in transmission of Fasciola spp. because of confusion in identification of the snail hosts. The aim of this study is, therefore, to clarify the identities of lymnaeid snails in Vietnam by a combination of morphological and molecular approaches. The molecular analyses using the second internal transcribed spacer (ITS2) of the nuclear ribosomal DNA clearly showed that lymnaeids in Vietnam include 3 species, Austropeplea viridis (morphologically identified as L. viridis), Radix auricularia (morphologically identified as L. swinhoei) and Radix rubiginosa (morphologically identified as Lymnaea sp.). R. rubiginosa is a new record for Vietnam. Among them, only A. viridis was found to be infected with Fasciola spp. These results provide a new insight into lymnaeid snails in Vietnam. Identification of lymnaeid snails in Vietnam and their role in the liver fluke transmission should be further investigated.

First Report of Damping-Off of Ovate-Leaf Atractylodes Caused by Rhizoctonia solani AG-5 in South Korea

  • Hassan, Oliul;Chang, Taehyun
    • Mycobiology
    • /
    • 제49권2호
    • /
    • pp.196-200
    • /
    • 2021
  • In May to July 2019, ovate-leaf atractylodes seedling and plant with Damping-off symptoms were observed in farmer field at Sangju and Mungyeong, Korea. Seven fungal isolates have been retrieved from diseased root tissue and identified as Rhizoctonia solani AG-5 based on morphological and molecular characteristics. To the best of our knowledge, this is the first report on damping-off of ovate-leaf atractylodes caused by R. solani AG-5 in South Korea.

Techno-functional and rheological properties of Tenebrio molitor larvae protein by different extraction methods

  • Yeeun Kan;Insang Cho;Eunyoung Oh;Ra-Yeong Choi;Jeewon Koh;Yookyung Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제48권2호
    • /
    • pp.86-97
    • /
    • 2024
  • Alkaline- or salt-assisted extractions have been widely used to extract edible insect proteins, however, there is a need for extraction techniques that balance cost-efficient production as well as preserving the protein properties. Mealworm proteins (Tenebrio molitor larvae) were extracted using three different extraction methods-alkali (AMP), salt (SMP), and water (WMP)-and then physicochemical and techno-functional properties were examined. AMP had high yield, protein, and amino acid contents, whereas WMP had high moisture, ash, and fat contents. SDS-PAGE showed a wide range of molecular weights in WMP whereas mostly low molecular weights were observed in AMP and SMP. AMP had poor protein solubilities compared to SMP and WMP across all pHs. AMP had enhanced water-holding capacity and emulsion stability, whereas WMP had improved oil-holding capacity and foaming properties. WMP formed a gel with and without the transglutaminase. The physicochemical and techno-functional properties demonstrated that water-soluble mealworm protein was superior to alkali-and salt-soluble mealworm proteins. Considering the cost efficiency and minimal impact on the environment as well, a cold press juicer could be utilized for mass production of mealworm protein compared to the conventional methods of protein extraction using alkali and salt.

Seasonal variation in longitudinal connectivity for fish community in the Hotancheon from the Geum River, as assessed by environmental DNA metabarcoding

  • Hyuk Je Lee;Yu Rim Kim;Hee-kyu Choi;Seo Yeon Byeon;Soon Young Hwang;Kwang-Guk An;Seo Jin Ki;Dae-Yeul Bae
    • Journal of Ecology and Environment
    • /
    • 제48권1호
    • /
    • pp.32-48
    • /
    • 2024
  • Background: Longitudinal connectivity in river systems strongly affects biological components related to ecosystem functioning, thereby playing an important role in shaping local biodiversity and ecosystem health. Environmental DNA (eDNA)-based metabarcoding has an advantage of enabling to sensitively diagnose the presence/absence of species, becoming an efficient/effective approach for studying the community structure of ecosystems. However, little attention has been paid to eDNA-based biomonitoring for river systems, particularly for assessing the river longitudinal connectivity. In this study, by using eDNA we analyzed and compared species diversity and composition among artificial barriers to assess the longitudinal connectivity of the fish community along down-, mid- and upstream in the Hotancheon from the Geum River basin. Moreover, we investigated temporal variation in eDNA fish community structure and species diversity according to season. Results: The results of species detected between eDNA and conventional surveys revealed higher sensitivity for eDNA and 61% of species (23/38) detected in both methods. The results showed that eDNA-based fish community structure differs from down-, mid- and upstream, and species diversity decreased from down to upstream regardless of season. We found that there was generally higher species diversity at the study sites in spring (a total number of species across the sites [n] = 29) than in autumn (n = 27). Nonmetric multidimensional scaling and heatmap analyses further suggest that there was a tendency for community clusters to form in the down-, mid- and upstream, and seasonal variation in the community structure also existed for the sites. Dominant species in the Hotancheon was Rhynchocypris oxycephalus (26.07%) regardless of season, and subdominant species was Nipponocypris koreanus (16.50%) in spring and Odontobutis platycephala (15.73%) in autumn. Artificial barriers appeared to negatively affect the connectivity of some fish species of high mobility. Conclusions: This study attempts to establish a biological monitoring system by highlighting the versatility and power of eDNA metabarcoding in monitoring native fish community and further evaluating the longitudinal connectivity of river ecosystems. The results of this study suggest that eDNA can be applied to identify fish community structure and species diversity in river systems, although some shortcomings remain still need to be resolved.