Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.7.148

Next-generation approaches to the microbial ecology of food fermentations  

Bokulich, Nicholas A. (Department of Viticulture and Enology, University of California)
Mills, David A. (Department of Viticulture and Enology, University of California)
Publication Information
BMB Reports / v.45, no.7, 2012 , pp. 377-389 More about this Journal
Abstract
Food fermentations have enhanced human health since the dawn of time and remain a prevalent means of food processing and preservation. Due to their cultural and nutritional importance, many of these foods have been studied in detail using molecular tools, leading to enhancements in quality and safety. Furthermore, recent advances in high-throughput sequencing technology are revolutionizing the study of food microbial ecology, deepening insight into complex fermentation systems. This review provides insight into novel applications of select molecular techniques, particularly next-generation sequencing technology, for analysis of microbial communities in fermented foods. We present a guideline for integrated molecular analysis of food microbial ecology and a starting point for implementing next-generation analysis of food systems.
Keywords
Food fermentation; Microbial community profiling; Molecular profiling tools; Next-generation sequencing; TRFLP;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Cho, G. S., Krauss, S., Huch, M., Du Toit, M. and Franz, C. M. (2011) Development of a quantitative PCR for detection of Lactobacillus plantarum starters during wine malolactic fermentation. J. Microbiol. Biotechnol. 21, 1280-1286.   DOI   ScienceOn
2 Muyzer, G., Dewaal, E. C. and Uitterlinden, A. G. (1993) Profiling of complex microbial populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S ribosomal RNA. Appl. Environ. Microbiol. 59, 695-700.
3 Kisand, V. and Wikner, J. (2003) Limited resolution of 16S rDNA DGGE caused by melting properties and closely related DNA sequences. J. Microbiol. Meth. 54, 183-191.   DOI   ScienceOn
4 Sekiguchi, H., Tomioka, N., Nakahara, T. and Uchiyama, H. (2001) A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis. Biotechnol. Lett. 23, 1205-1208.   DOI   ScienceOn
5 Nubel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R. I., Ludwig, W. and Backhaus, H. (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178, 5636-5643.   DOI
6 Polz, M. F. and Cavanaugh, C. M. (1998) Bias in template- to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64, 3724-3730.
7 Postollec, F., Falentin, H., Pavan, S., Combrisson, J. and Sohier, D. (2011) Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol. 28, 848-861.   DOI   ScienceOn
8 Lucas, P. M., Claisse, O. and Lonvaud-Funel, A. (2008) High frequency of histamine-producing bacteria in the enological environment and instability of the histidine decarboxylase production phenotype. Appl. Environ. Microbiol. 74, 811-817.   DOI   ScienceOn
9 Arena, M. P., Romano, A., Capozzi, V., Beneduce, L., Ghariani, M., Grieco, F., Lucas, P. and Spano, G. (2011) Expression of Lactobacillus brevis IOEB 9809 tyrosine decarboxylase and agmatine deiminase genes in wine correlates with substrate availability. Lett. Appl. Microbiol. 53, 395-402.   DOI   ScienceOn
10 Ladero, V., Coton, M., Fernandez, M., Buron, N., Cruz Martin, M., Guichard, H., Coton, E. and Alvarez, M. A. (2011) Biogenic amines content in Spanish and French natural ciders: Application of qPCR for quantitative detection of biogenic amine-producers. Food Microbiol. 28, 554-561.   DOI   ScienceOn
11 Xufre, A., Albergaria, H., Inacio, J., Spencer-Martins, I. and Girio, F. (2006) Application of fluorescence in situ hybridisation (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations. Int. J. Food Microbiol. 108, 376-384.
12 Fernandez, M., del Rio, B., Linares, D. M., Martin, M. C. and Alvarez, M. A. (2006) Real-time polymerase chain reaction for quantitative detection of histamine-producing bacteria: use in cheese production. J. Dairy Sci. 89, 3763-3769.   DOI   ScienceOn
13 Torriani, S., Gatto, V., Sembeni, S., Tofalo, R., Suzzi, G., Belletti, N., Gardini, F. and Bover-Cid, S. (2008) Rapid detection and quantification of tyrosine decarboxylase gene (tdc) and its expression in gram-positive bacteria associated with fermented foods using PCR-based methods. J. Food Prot. 71, 93-101.   DOI
14 Ibarburu, I., Aznar, R., Elizaquivel, P., Garcia-Quintans, N., Lopez, P., Munduate, A., Irastorza, A. and Duenas, M. T. (2010) A real-time PCR assay for detection and quantification of 2-branched (1,3)-$\beta$-D-glucan producing lactic acid bacteria in cider. Int. J. Food Microbiol. 143, 26-31.   DOI   ScienceOn
15 Blasco, L., Ferrer, S. and Pardo, I. (2003) Development of specific fluorescent oligonucleotide probes for in situ identification of wine lactic acid bacteria. FEMS Microbiol. Lett. 225, 115-123.   DOI   ScienceOn
16 Yasuhara, T., Yuuki, T. and Kagami, N. (2001) Novel quantitative method for detection of Pectinatus using rRNA targeted fluorescent probes. J. Am. Soc. Brew. Chem. 59, 117-121.
17 Babot, J. D., Hidalgo, M., Arganaraz-Martinez, E., Apella, M. C. and Perez Chaia, A. (2011) Fluorescence in situ hybridization for detection of classical propionibacteria with specific 16S rRNA-targeted probes and its application to enumeration in Gruyere cheese. Int. J. Food Microbiol. 145, 221-228.   DOI   ScienceOn
18 Ercolini, D., Hill, P. J. and Dodd, C. E. (2003) Development of a fluorescence in situ hybridization method for cheese using a 16S rRNA probe. J. Microbiol. Methods 52, 267-271.   DOI   ScienceOn
19 Bottari, B., Santarelli, M., Neviani, E. and Gatti, M. (2010) Natural whey starter for Parmigiano Reggiano: culture-independent approach. J. Appl. Microbiol. 108, 1676-1684.   DOI   ScienceOn
20 Mounier, J., Monnet, C., Jacques, N., Antoinette, A. and Irlinger, F. (2009) Assessment of the microbial diversity at the surface of Livarot cheese using culture-dependent and independent approaches. Int. J. Food Microbiol. 133, 31-37.   DOI   ScienceOn
21 Klug, B., Rodler, C., Koller, M., Wimmer, G., Kessler, H. H., Grube, M. and Santigli, E. (2011) Oral biofilm analysis of palatal expanders by fluorescence in-situ hybridization and confocal laser scanning microscopy. J. Vis. Exp. 20, 2967.
22 Rouse, S. and van Sinderen, D. (2008) Bioprotective potential of lactic acid bacteria in malting and brewing. J. Food Prot. 71, 1724-1733.   DOI
23 Ray, R. C. and Sivakumar, P. S. (2009) Traditional and novel fermented foods and beverages from tropical root and tuber crops: review. Int. J. Food Sci. Technol. 44, 1073-1087.   DOI   ScienceOn
24 Tannock, G. W. (2002) Probiotics and prebiotics: Where are we going? (eds.), Caister Academic Press, Norfork, England.
25 Heard, G. M. and Fleet, G. H. (1986) Evaluation of selective media for enumeration of yeast during wine fermentation. J. Appl. Bacteriol. 60, 477-481.   DOI
26 Ampe, F., Omar, N. B., Moizan, C., Wacher, C. and Guyot, J. P. (1999) Polyphasic study of the spatial distribution of microorganisms in mexican pozol, a fermented maize dough, demonstrates the need for cultivation- independent methods to investigate traditional fermentations. Appl. Environ. Microbiol. 65, 5464-5473.
27 Andorra, I., Monteiro, M., Esteve-Zarzoso, B., Albergaria, H. and Mas, A. (2011) Analysis and direct quantification of Saccharomyces cerevisiae and Hanseniaspora guilliermondii populations during alcoholic fermentation by fluorescence in situ hybridization, flow cytometry and quantitative PCR. Food Microbiol. 28, 1483-1491.   DOI   ScienceOn
28 Divol, B. and Lonvaud-Funel, A. (2005) Evidence for viable but nonculturable yeasts in botrytis-affected wine. J. Appl. Microbiol. 99, 85-93.   DOI   ScienceOn
29 Millet, V. and Lonvaud-Funel, A. (2000) The viable but non-culturable state of wine micro-organisms during storage. Lett. Appl. Microbiol. 30, 136-141.   DOI   ScienceOn
30 Bottari, B., Ercolini, D., Gatti, M. and Neviani, E. (2006) Application of FISH technology for microbiological analysis: current state and prospects. Appl. Microbiol. Biotechnol. 73, 485-494.   DOI
31 Nilsson, R. H., Ryberg, M., Abarenkov, K., Sjokvist, E. and Kristiansson, E. (2009) The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol. Lett. 296, 97-101.   DOI   ScienceOn
32 Hayes, M., Ross, R. P., Fitzgerald, G. F. and Stanton, C. (2007) Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part I: overview. Biotechnol. J. 2, 426-434.   DOI   ScienceOn
33 Nout, M. J. (2009) Rich nutrition from the poorest - cereal fermentations in Africa and Asia. Food Microbiol. 26, 685-692.   DOI   ScienceOn
34 Ross, R. P., Morgan, S. and Hill, C. (2002) Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 79, 3-16.   DOI   ScienceOn
35 Kruger, D., Kapturska, D., Fischer, C., Daniel, R. and Wubet, T. (2012) Diversity Measures in Environmental Sequences Are Highly Dependent on Alignment Quality-Data from ITS and New LSU Primers Targeting Basidiomycetes. PLoS ONE 7, e32139.   DOI
36 Anderson, I. C. and Cairney, J. W. G. (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Env. Microbiol. 6, 769-779.   DOI   ScienceOn
37 Kurtzman, C. and Robnett, C. J. (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73, 331-371.   DOI   ScienceOn
38 Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A. and Chen, W. (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS 109, 6241-6246.   DOI   ScienceOn
39 Sakai, M., Matsuka, A., Komura, T. and Kanazawa, S. (2004) Application of a new PCR primer for terminal restriction fragment length polymorphism analysis of the bacterial communities in plant roots. J. Microbiol. Methods. 59, 81-89.   DOI   ScienceOn
40 Bellemain, E., Carlsen, T., Brochmann, C., Coissac, E., Taberlet, P. and Kauserud, H. (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 10, 189.   DOI   ScienceOn
41 Martin, K. J. and Rygiewicz, P. T. (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol. 5, 28.   DOI   ScienceOn
42 Sakamoto, N., Tanaka, S., Sonomoto, K. and Nakayama, J. (2011) 16S rRNA pyrosequencing-based investigation of the bacterial community in nukadoko, a pickling bed of fermented rice bran. Int. J. Food Microbiol. 144, 352-359.   DOI   ScienceOn
43 Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N. and Larsson, K. H. (2008) Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinform. Online 4, 193-201.
44 Simon, C. and Daniel, R. (2011) Metagenomic analyses: past and future trends. Appl. Environ. Microbiol. 77, 1153-1161.   DOI   ScienceOn
45 Lauber, C. L., Zhou, N., Gordon, J. I., Knight, R. and Fierer, N. (2010) Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol. Lett. 307, 80-86.   DOI   ScienceOn
46 Li, F., Hullar, M. A. and Lampe, J. W. (2007) Optimization of terminal restriction fragment polymorphism (TRFLP) analysis of human gut microbiota. J. Microbiol. Meth. 68, 303-311.   DOI   ScienceOn
47 Andorra, I., Esteve-Zarzoso, B., Guillamon, J. M. and Mas, A. (2010) Determination of viable wine yeast using DNA binding dyes and quantitative PCR. Int. J. Food Microbiol. 144, 257-262.   DOI   ScienceOn
48 Rossen, L., Norskov, P., Holmstrom, K. and Rasmussen, O. F. (1992) Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int. J. Food Microbiol. 17, 37-45.   DOI   ScienceOn
49 Nocker, A., Cheung, C. Y. and Camper, A. K. (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Meth. 67, 310-320.   DOI   ScienceOn
50 Nocker, A., Richter-Heitmann, T., Montijn, R., Schuren, F. and Kort, R. (2010) Discrimination between live and dead cells in bacterial communities from environmental water samples analyzed by 454 pyrosequencing. Int. Microbiol. 13, 59-65.
51 Tedersoo, L., Abarenkov, K., Nilsson, R. H., Schussler, A., Grelet, G. A., Kohout, P., Oja, J., Bonito, G. M., Veldre, V., Jairus, T., Ryberg, M., Larsson, K. H. and Koljalg, U. (2011) Tidying up international nucleotide sequence databases: ecological, geographical and sequence quality annotation of its sequences of mycorrhizal fungi. PLoS ONE 6, e24940.   DOI
52 McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z., Probst, A., Andersen, G. L., Knight, R. and Hugenholtz, P. (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610-618.   DOI
53 De Santis, T., Hugenholtz, P., Larsen, N., Rojas, N., Brodie, E., Keller, K., Huber, T., Dalevi, D., Hu, P. and Andersen, G. L. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069-5072.   DOI   ScienceOn
54 Soergel, D. A. W., Dey, N., Knight, R. and Brenner, S. E. (2012) Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J. 7, doi: 10.1038/ismej.2011.208.
55 Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J. and Glockner, F. O. (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids. Res. 35, 7188-7196.   DOI   ScienceOn
56 Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., Kulam-Syed-Mohideen, A. S., McGarrel, D. M., Marsh, T. L., Garrity, G. M. and Tiedje, J. M. (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids. Res. 37, D141-D145.   DOI   ScienceOn
57 Abarenkov, K., Nilsson, R. H., Larsson, K.-H., Alexander, I. J., Eberhardt, U., Erland, S., Høiland, K., Kjøller, R., Larsson, E., Pennanen, T., Sen, R., Taylor, A. F. S., Tedersoo, L., Ursing, B. M., Vrålstad, T., Liimatainen, K., Peintner, U. and Kõljalg, U. (2010) The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytol. 186, 1447-1452.
58 Park, E. J., Chun, J., Cha, C. J., Park, W. S., Jeon, C. O. and Bae, J. W. (2012) Bacterial community analysis during fermentation of ten representative kinds of kimchi with barcoded pyrosequencing. Food Microbiol. 30, 197-204.   DOI   ScienceOn
59 Park, E. J., Kim, K. H., Abell, G. C., Kim, M. S., Roh, S. W. and Bae, J. W. (2011) Metagenomic analysis of the viral communities in fermented foods. Appl. Environ Microbiol. 77, 1284-1291.   DOI   ScienceOn
60 Lozupone, C. A. and Knight, R. (2005) UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228-8235.   DOI   ScienceOn
61 Nilsson, R. H., Ryberg, M., Kristiansson, E., Abarenkov, K., Larsson, K. H. and Koljalg, U. (2006) Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS ONE 1, e59.   DOI
62 Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Gonzalez Pena, A., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J. and Knight, R. (2010) Qiime allows analysis of high-throughput community sequence data. Nat. Methods 7, 335-336.   DOI   ScienceOn
63 Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J. and Weber, C. F. (2009) Introducing mothur: open-source, platform- independent, community-supported software for describing and comparing microbial communities. Appl. Environ Microbiol. 75, 7537-7541.   DOI   ScienceOn
64 Zaneveld, J. R., Parfrey, L. W., Van Treuren, W., Lozupone, C., Clemente, J. C., Knights, D., Stombaugh, J., Kuczynski, J. and Knight, R. (2011) Combined phylogenetic and genomic approaches for the high-throughput study of microbial habitat adaptation. Trends Microbiol. 19, 472-482.   DOI   ScienceOn
65 Li, X. R., Ma, E. B., Yan, L. Z., Meng, H., Du, X. W., Zhang, S. W. and Quan, Z. X. (2011) Bacterial and fungal diversity in the traditional Chinese liquor fermentation process. Int. J. Food Microbiol. 146, 31-37.   DOI   ScienceOn
66 Alegria, A., Szczesny, P., Mayo, B., Bardowski, J. and Kowalczyk, M. (2012) Biodiversity in Oscypek, a traditional Polish cheese, determined by culture-dependent and -independent approaches. Appl. Environ. Microbiol. 78, 1890-1898.   DOI
67 Humblot, C. and Guyot, J. P. (2009) Pyrosequencing of tagged 16S rRNA gene amplicons for rapid deciphering of the microbiomes of fermented foods such as pearl millet slurries. Appl. Environ. Microbiol. 75, 4354-4361.   DOI   ScienceOn
68 Kim, Y. S., Kim, M. C., Kwon, S. W., Kim, S. J., Park, I. C., Ka, J. O. and Weon, H. Y. (2011) Analyses of bacterial communities in meju, a Korean traditional fermented soybean bricks, by cultivation-based and pyrosequencing methods. J. Microbiol. 49, 340-348.   DOI
69 Roh, S. W., Kim, K. H., Nam, Y. D., Chang, H. W., Park, E. J. and Bae, J. W. (2010) Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J. 4, 1-16.   DOI
70 Jung, M. J., Nam, Y. D., Roh, S. W. and Bae, J. W. (2012) Unexpected convergence of fungal and bacterial communities during fermentation of traditional Korean alcoholic beverages inoculated with various natural starters. Food Microbiol. 30, 112-123.   DOI   ScienceOn
71 Nam, Y. D., Lee, S. Y. and Lim, S. I. (2012) Microbial community analysis of Korean soybean pastes by next-generation sequencing. Int. J. Food Microbiol. 155, 36-42.   DOI   ScienceOn
72 Nam, Y. D., Park, S. L. and Lim, S. I. (2012) Microbial Composition of the Korean Traditional Food "kochujang" Analyzed by a Massive Sequencing Technique. J. Food Sci. 77, M250-256.   DOI   ScienceOn
73 Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J., Chen, Z., Dewell, S. B., Du, L., Fierro, J. M., Gomes, X. V., Godwin, B. C., He, W., Helgesen, S., Ho, C. H., Irzyk, G. P., Jando, S. C., Alenquer, M. L., Jarvie, T. P., Jirage, K. B., Kim, J. B., Knight, J. R., Lanza, J. R., Leamon, J. H., Lefkowitz, S. M., Lei, M., Li, J., Lohman, K. L., Lu, H., Makhijani, V. B., McDade, K. E., McKenna, M. P., Myers, E. W., Nickerson, E., Nobile, J. R., Plant, R., Puc, B. P., Ronan, M. T., Roth, G. T., Sarkis, G. J., Simons, J. F., Simpson, J. W., Srinivasan, M., Tartaro, K. R., Tomasz, A., Vogt, K. A., Volkmer, G. A., Wang, S. H., Wang, Y., Weiner, M. P., Yu, P., Begley, R. F. and Rothberg, J. M. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376-380.
74 Bennett, S. (2004) Solexa Ltd. Pharmacogenomics 5, 433-438.   DOI   ScienceOn
75 Koyanagi, T., Kiyohara, M., Matsui, H., Yamamoto, K., Kondo, T., Katayama, T. and Kumagai, H. (2011) Pyrosequencing survey of the microbial diversity of 'narezushi', an archetype of modern Japanese sushi. Lett. Appl. Microbiol. 53, 635-640.   DOI   ScienceOn
76 Kuczynski, J., Lauber, C. L., Walters, W. A., Parfrey, L. W., Clemente, J. C., Gevers, D. and Knight, R. (2012) Experimental and analytical tools for studying the human microbiome. Nat. Rev. Genet. 13, 47-58.   DOI
77 Liu, Z., Lozupone, C. A., Hamady, M., Bushman, F. D. and Knight, R. (2007) Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids. Res. 35, e120.   DOI   ScienceOn
78 Kiyohara, M., Koyanagi, T., Matsui, H., Yamamoto, K., Take, H., Katsuyama, Y., Tsuji, A., Miyamae, H., Kondo, T., Nakamura, S., Katayama, T. and Kumagai, H. (2012) Changes in microbiota population during fermentation of narezushi as revealed by pyrosequencing analysis. Biosci. Biotechnol. Biochem. 76, 48-52.   DOI   ScienceOn
79 Sakamoto, N., Tanaka, S., Sonomoto, K. and Nakayama, J. (2011) 16S rRNA pyrosequencing-based investigation of the bacterial community in nukadoko, a pickling bed of fermented rice bran. Int. J. Food Microbiol. 144, 352-359.   DOI   ScienceOn
80 Rademaker, J. L. W., Hoolwerf, J. D., Wagendorp, A. A. and te Giffel, M. C. (2006) Assessment of microbial population dynamics during yoghurt and hard cheese fermentation and ripening by DNA population fingerprinting. Int. Dairy J. 16, 457-466.   DOI   ScienceOn
81 Rademaker, J. L. W., Peinhopf, M., Rijnen, L., Bockelmann, W. and Noordman, W. H. (2005) The surface microflora dynamics of bacterial smear-ripened Tilsit cheese determined by T-RFLP DNA population fingerprint analysis. Int. Dairy J. 15, 785-794.   DOI   ScienceOn
82 Bokulich, N. A., Joseph, C. M. L., Allen, G., Benson, A. K. and Mills, D. A. (2012) Next-Generation Sequencing Reveals Significant Bacterial Diversity of Botrytized Wine. PLoS ONE 7, e36357. doi:10.1371/journal.pone.0036357.   DOI
83 Sanchez, J. I., Rossetti, L., Martinez, B., Rodriguez, A. and Giraffa, G. (2006) Application of reverse transcriptase PCR-based T-RFLP to perform semi-quantitative analysis of metabolically active bacteria in dairy fermentations. J. Microbiol. Meth. 65, 268-277.   DOI   ScienceOn
84 Bokulich, N. A., Hwang, C. F., Liu, S., Boundy-Mills, K. and Mills, D. A. (2012) Profiling the yeast communities of wine using terminal restriction fragment length polymorphism. Am. J. Enol. Vitic. 63, doi:10.5344/ajev.2011.11077.
85 Bokulich, N. A., Bamforth, C. W. and Mills, D. A. (2012) Brewhouse-resident microbiota are responsible for multi- stage fermentation of american coolship ale. PLoS ONE 7, e35507. doi:10.1371/journal.pone.0035507.   DOI
86 Marcobal, A., Underwood, M. and Mills, D. A. (2008) Rapid determination of the bacterial composition of commercial probiotic products by terminal restriction fragment length polymorphism analysis. J. Pediatr. Gastroenterol. Nutr. 46, 608-611.   DOI   ScienceOn
87 Egert, M. and Friedrich, M. W. (2003) Formation of pseudo- terminal restriction fragments, a PCR-related bias affecting terminal restriction fragment length polymorphism analysis of microbial community structure. Appl. Environ. Microbiol. 69, 2555-2562.   DOI
88 Bokulich, N. A. and Mills, D. A. (2012) Differentiation of mixed lactic acid bacteria communities in beverage fermentations using targeted terminal restriction fragment length polymorphism. Food Microbiol. 31, 126-132. doi:10.1016/j.fm.2012.02.007.   DOI   ScienceOn
89 Blackwood, C. B., Marsh, T. L., Kim, S. H. and Paul, E. A. (2003) Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Appl. Environ. Microbiol. 69, 926-932.   DOI
90 Culman, S. W., Gauch, H. G., Blackwood, C. B. and Thies, J. E. (2008) Analysis of T-RFLP data using analysis of variance and ordination methods: A comparative study. J. Microbiol. Meth. 75, 55-63.   DOI   ScienceOn
91 Blackwood, C. B., Hudleston, D., Zak, D. R. and Buyer, J. S. (2007) Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: insights from simulated microbial communities. Appl. Environ. Microbiol. 73, 5276-5283.   DOI   ScienceOn
92 Schutte, U. M. E., Abdo, Z., Bent, S. J., Shyu, C., Williams, C. J., Pierson, J. D. and Forney, L. J. (2008) Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl. Microbiol. Biotechnol. 80, 365-380.   DOI
93 Liu, W. T., Marsh, T. L., Cheng, H. and Forney, L. J. (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63, 4516-4522.
94 Speksnijder, A., Kowalchuk, G. A., De Jong, S., Kline, E., Stephen, J. R. and Laanbroek, H. J. (2001) Microvariation artifacts introduced by PCR and cloning of closely related 16S rRNA gene sequences. Appl. Environ. Microbiol. 67, 469-472.   DOI   ScienceOn
95 Tourlomousis, P., Kemsley, E. K., Ridgway, K. P., Toscano, M. J., Humphrey, T. J. and Narbad, A. (2010) PCR-denaturing gradient gel electrophoresis of complex microbial communities: a two-step approach to address the effect of gel-to-gel variation and allow valid comparisons across a large dataset. Microb. Ecol. 59, 776-786.   DOI
96 Kaplan, C. W. and Kitts, C. L. (2003) Variation between observed and true Terminal Restriction Fragment length is dependent on true TRF length and purine content. J. Microbiol. Meth. 54, 121-125.   DOI   ScienceOn
97 Cocolin, L., Bisson, L. F. and Mills, D. A. (2000) Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol. Lett. 189, 81-87.   DOI
98 Renouf, V., Claisse, O., Miot-Sertier, C. and Lonvaud- Funel, A. (2006) Lactic acid bacteria evolution during winemaking: use of rpoB gene as a target for PCR-DGGE analysis. Food Microbiol. 23, 136-145.   DOI   ScienceOn
99 Ercolini, D. (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J. Microbiol. Meth. 56, 297-314.   DOI   ScienceOn
100 Marsh, T. L. (2005) Culture-independent microbial community analysis with terminal restriction fragment length polymorphism. Methods Enzymol. 397, 308-329.   DOI   ScienceOn
101 Hartmann, M., Enkerli, J. and Widmer, F. (2007) Residual polymerase activity-induced bias in terminal restriction fragment length polymorphism analysis. Env. Microbiol. 9, 555-559.   DOI   ScienceOn
102 Mendes-Ferreira, A., Barbosa, C., Jimenez-Marti, E., Del Olmo, M. L. and Mendes-Faia, A. (2010) The wine yeast strain-dependent expression of genes implicated in sulfide production in response to nitrogen availability. J. Microbiol. Biotechnol. 20, 1314-1321.   DOI   ScienceOn
103 Haakensen, M. C., Butt, L., Chaban, B., Deneer, H., Ziola, B. and Dowgiert, T. (2007) horA-Speciric real-time PCR for detection of beer-spoilage lactic acid bacteria. J. Am. Soc. Brew. Chem. 65, 157-165.