• Title/Summary/Keyword: MODIS data

Search Result 467, Processing Time 0.025 seconds

The Character of Distribution of Solar Radiation in Mongolia based on Meteorological Satellite Data (위성자료를 이용한 몽골의 일사량 분포 특성)

  • Jee, Joon-Bum;Jeon, Sang-Hee;Choi, Young-Jean;Lee, Seung-Woo;Park, Young-San;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.33 no.2
    • /
    • pp.139-147
    • /
    • 2012
  • Mongolia's solar-meteorological resources map has been developed using satellite data and reanalysis data. Solar radiation was calculated using solar radiation model, in which the input data were satellite data from SRTM, TERA, AQUA, AURA and MTSAT-1R satellites and the reanalysis data from NCEP/NCAR. The calculated results are validated by the DSWRF (Downward Short-Wave Radiation Flux) from NCEP/NCAR reanalysis. Mongolia is composed of mountainous region in the western area and desert or semi-arid region in middle and southern parts of the country. South-central area comprises inside the continent with a clear day and less rainfall, and irradiation is higher than other regions on the same latitude. The western mountain region is reached a lot of solar energy due to high elevation but the area is covered with snow (high albedo) throughout the year. The snow cover is a cause of false detection from the cloud detection algorithm of satellite data. Eventually clearness index and solar radiation are underestimated. And southern region has high total precipitable water and aerosol optical depth, but high solar radiation reaches the surface as it is located on the relatively lower latitude. When calculated solar radiation is validated by DSWRF from NCEP/NCAR reanalysis, monthly mean solar radiation is 547.59 MJ which is approximately 2.89 MJ higher than DSWRF. The correlation coefficient between calculation and reanalysis data is 0.99 and the RMSE (Root Mean Square Error) is 6.17 MJ. It turned out to be highest correlation (r=0.94) in October, and lowest correlation (r=0.62) in March considering the error of cloud detection with melting and yellow sand.

Analysis of the Impact of Satellite Remote Sensing Information on the Prediction Performance of Ungauged Basin Stream Flow Using Data-driven Models (인공위성 원격 탐사 정보가 자료 기반 모형의 미계측 유역 하천유출 예측성능에 미치는 영향 분석)

  • Seo, Jiyu;Jung, Haeun;Won, Jeongeun;Choi, Sijung;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.147-159
    • /
    • 2024
  • Lack of streamflow observations makes model calibration difficult and limits model performance improvement. Satellite-based remote sensing products offer a new alternative as they can be actively utilized to obtain hydrological data. Recently, several studies have shown that artificial intelligence-based solutions are more appropriate than traditional conceptual and physical models. In this study, a data-driven approach combining various recurrent neural networks and decision tree-based algorithms is proposed, and the utilization of satellite remote sensing information for AI training is investigated. The satellite imagery used in this study is from MODIS and SMAP. The proposed approach is validated using publicly available data from 25 watersheds. Inspired by the traditional regionalization approach, a strategy is adopted to learn one data-driven model by integrating data from all basins, and the potential of the proposed approach is evaluated by using a leave-one-out cross-validation regionalization setting to predict streamflow from different basins with one model. The GRU + Light GBM model was found to be a suitable model combination for target basins and showed good streamflow prediction performance in ungauged basins (The average model efficiency coefficient for predicting daily streamflow in 25 ungauged basins is 0.7187) except for the period when streamflow is very small. The influence of satellite remote sensing information was found to be up to 10%, with the additional application of satellite information having a greater impact on streamflow prediction during low or dry seasons than during wet or normal seasons.

Extraction of Sea Surface Temperature in Coastal Area Using Ground-Based Thermal Infrared Sensor On-Boarded to Aircraft (지상용 열적외선 센서의 항공기 탑재를 통한 연안 해수표층온도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin;Kim, Seung Hee;Cho, Yang-Ki;Lee, Sang-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.797-807
    • /
    • 2014
  • The Sea Surface Temperature (SST) is one of the most important oceanic environmental factors in determining the change of marine environments and ecological activities. Satellite thermal infrared images can be effective for understanding the global trend of sea surface temperature due to large scale. However, their low spatial resolution caused some limitations in some areas where complicated and refined coastal shapes due to many islands are present as in the Korean Peninsula. The coastal ocean is also very important because human activities interact with the environmental change of coastal area and most aqua farming is distributed in the coastal ocean. Thus, low-cost airborne thermal infrared remote sensing with high resolution capability is considered for verifying its possibility to extract SST and to monitor the changes of coastal environment. In this study, an airborne thermal infrared system was implemented using a low-cost and ground-based thermal infrared camera (FLIR), and more than 8 airborne acquisitions were carried out in the western coast of the Korean Peninsula during the periods between May 23, 2012 and December 7, 2013. The acquired thermal infrared images were radiometrically calibrated using an atmospheric radiative transfer model with a support from a temperature-humidity sensor, and geometrically calibrated using GPS and IMU sensors. In particular, the airborne sea surface temperature acquired in June 25, 2013 was compared and verified with satellite SST as well as ship-borne thermal infrared and in-situ SST data. As a result, the airborne thermal infrared sensor extracted SST with an accuracy of $1^{\circ}C$.

Comparison of the Estimated Result of Ecosystem Service Value Using Pixel-based and Object-based Analysis (화소 및 객체기반 분석기법을 활용한 생태계서비스 가치 추정 결과 비교)

  • Moon, Jiyoon;Kim, Youn-soo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1187-1196
    • /
    • 2017
  • Despite the continuing effort to estimate the value of function and services of ecosystem, most of the researches has used low and medium resolution satellite imagery such as MODIS or Landsat. It means that the researches to measure the ecosystem service value using VHR (Very High Resolution) satellite imagery have not been performed much, while the source of available VHR imagery is increasing. Thus, the aim of this study is to estimate and compare the result of ecosystem service value over Sejong city, S. Korea, which is one of the rapidly changed city, through the pixel-based and object-based classification analysis using VHR KOMPSAT-3 images, for more specific and precise information. In the result of the classification, forest and grassland were underestimated while agriculture and urban were overestimated in the pixel-based result compared to the object-based result. Furthermore, bare soil area was presented contrasting result that was increased in the pixel-based result, however, decreased in the object-based result. Using those results, ecosystem service values were estimated. The annual ecosystem service values in 2014 were $8.18 million USD(pixel-based) and $8.63 million USD(object-based), however, decreased to $7.80 million USD(pixel-based) and $8.62 million USD(object-based) in 2016. It is expected to use those results as a preliminary data when to make sustainable development plan and policy to improve the quality of life in the local level.

Satellite-Measured Vegetation Phenology and Atmospheric Aerosol Time Series in the Korean Peninsula (위성기반의 한반도 식물계절학적 패턴과 대기 에어로졸의 시계열 특성 분석)

  • Park, Sunyurp
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.4
    • /
    • pp.497-508
    • /
    • 2013
  • The objective of this study is to determine the spatiotemporal influences of climatic factors and atmospheric aerosol on phenological cycles of the Korea Peninsular on a regional scale. High temporal-resolution satellite data can overcome limitations of ground-based phenological studies with reasonable spatial resolution. Study results showed that phenological characteristics were similar among evergreen forest, deciduous forest, and grassland, while the inter-annual vegetation index amplitude of mixed forest was differentiated from the other forest types. Forest types with high VI amplitude reached their maximum VI values earlier, but this relationship was not observed within the same forest type. The phase of VI, or the peak time of greenness, was significantly influenced by air temperature. Aerosol optical thickness (AOT) time-series showed strong seasonal and inter-annual variations. Generally, aerosol concentrations were peaked during late spring and early summer. However, inter-annual AOT variations did not have significant relationships with those of VIs. Weak relationships between AOT amplitude and EVI amplitude only indicates that there would be potential impacts of aerosols on vegetation growth in the long run.

  • PDF

3D Visualization of Satellite Remote-Sensing Images Using an Array DBMS (Array DBMS을 이용한 위성원격탐사 영상의 3차원 시각화)

  • Choi, Jong Hyeok;Lee, Jong Yun
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.193-204
    • /
    • 2015
  • An array DBMS has been expected widely from scientists because it is convenient to store and analyze the data of array type. In this paper, we describe how to handle satellite remote-sensing images in the array DBMS. However, previous works in their visualization have two problems as follows. First, the images are visualized as a state of distorted by the curvature of the earth. Second, it is difficult to apply the results of visualization by pre-written queries to other analyses. Therefore, this paper proposes a three dimensional visualization method of satellite remote-sensing images, not traditional 2D visualization. Our research contents are as follows. First, we describe how to store, process, and analyze the satellite remote-sensing images in the array DBMS. Second, we propose a three-dimensional visualization method for their processed outputs. Lastly, our contributions can be summarized that we propose a method of handling satellite remote-sensing images in the array DBMS and their 3D visualization techniques. It is also expected that their use be available widely in many industrial areas.

Present Status and Future Prospect of Satellite Image Uses in Water Resources Area (수자원분야의 위성영상 활용 현황과 전망)

  • Kim, Seongjoon;Lee, Yonggwan
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.105-123
    • /
    • 2018
  • Currently, satellite images act as essential and important data in water resources, environment, and ecology as well as information of geographic information system. In this paper, we will investigate basic characteristics of satellite images, especially application examples in water resources. In recent years, researches on spatial and temporal characteristics of large-scale regions utilizing the advantages of satellite imagery have been actively conducted for fundamental hydrological components such as evapotranspiration, soil moisture and natural disasters such as drought, flood, and heavy snow. Furthermore, it is possible to analyze temporal and spatial characteristics such as vegetation characteristics, plant production, net primary production, turbidity of water bodies, chlorophyll concentration, and water quality by using various image information utilizing various sensor information of satellites. Korea is planning to launch a satellite for water resources and environment in the near future, so various researches are expected to be activated on this field.