• Title/Summary/Keyword: MMIC integration

Search Result 12, Processing Time 0.022 seconds

The Bandwidth Enhancement of an Aperture Coupled Microstrip Patch Antenna Using Variation of an Aperture Width (개구면 폭 변화를 이용한 개구면 결합 마이크로스트립 패치 안테나의 대역폭 확장)

  • Kim, Jae-Hyun;Koo, Hwan-Mo;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.48-58
    • /
    • 2015
  • The bandwidth enhancement of an aperture coupled microstrip patch antenna(ACMPA) with a high permittivity feed substrate suitable for the integration with MMIC is investigated using variation of an aperture width. As an aperture width increases, the 10 dB return loss bandwidth increases due to the increase of the mutual resonance region between a patch resonance and an aperture resonance. The bandwidth of an ACMPA with extended aperture width is increased up to 35.3 % from 20.8 % of the ACMPA with an aperture of a typical aspect ratio 10:1. The degradation of the radiation characteristics of an ACMPA due to the increase of an aperture width is very small.

Implementation of Novel Bio-sensor Platform based on Optical MMI and Directional Coupler (광 MMI와 방향성 결합기에 기초한 새로운 바이오 센서 플랫폼의 구현)

  • Kwang-Chun Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.163-168
    • /
    • 2023
  • In this paper, a novel platform for chemical sensing and biosensing is presented. The working principle is based on the coupling efficiency and interference properties of optical directional coupler (DC) and multimode interference coupler (MMIC). It has been realized using planar technology to allow integration on a silicon substrate. Firstly, the dispersion curves of DC and MMIC is described, and the design specification of an optimized slot optical waveguide to increase waveguide sensitivity is selected. Next, the sensor response to the refractive index change of sensing analyte is numerically simulated. The numerical results reveal that high effective index change per refractive index unit (RIU) change of analyte is obtained, and the sensitivity can be tuned using the DC and MMIC design technique.

Effect of Feed Substrate Thickness on the Bandwidth and Radiation Characteristics of an Aperture-Coupled Microstrip Antenna with a High Permittivity Feed Substrate

  • Kim, Jae-Hyun;Kim, Boo-Gyoun
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.101-107
    • /
    • 2018
  • The impedance bandwidth and radiation characteristics of an aperture-coupled microstrip line-fed patch antenna (ACMPA) with a high permittivity (${\varepsilon}_r=10$) feed substrate suitable for integration with a monolithic microwave integrated circuit (MMIC) are investigated for various feed substrate thicknesses through an experiment and computer simulation. The impedance bandwidth of an ACMPA with a high permittivity feed substrate increases as the feed substrate thickness decreases. Furthermore, the front-to-back ratio of an ACMPA with a high permittivity feed substrate increases and the cross-polarization level decreases as the feed substrate thickness decreases. As the impedance bandwidth of an ACMPA with a high permittivity feed substrate increases and its radiation characteristics improve as the feed substrate thickness decreases, the ACMPA configuration becomes suitable for integration with an MMIC.

Effects of the Dielectric Constant and Thickness of a Feed Substrate on the Characteristics of an Aperture Coupled Microstrip Patch Antenna (급전 기판의 유전상수 및 두께가 개구면 결합 마이크로스트립 패치 안테나의 특성에 미치는 영향)

  • Bak, Hye-Lin;Koo, Hwan-Mo;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.49-59
    • /
    • 2014
  • Effects of the dielectric constant and thickness of a feed substrate on the bandwidth and radiation characteristics of an aperture coupled microstrip patch antenna (ACMPA) are investigated. The optimized return loss bandwidth of an ACMPA increases without the degradation of radiation characteristics as the feed substrate dielectric constant increases for the same feed substrate thickness. The optimized return loss bandwidth of an ACMPA with the dielectric constant of a feed substrate of 10, which is compatible with the high dielectric constant monolithic microwave integrated circuit (MMIC) materials, increases without the degradation of radiation characteristics as the thickness of a feed substrate decreases. The ACMPA configuration is suitable for integration with MMICs.

Fully Integrated HBT MMIC Series-Type Extended Doherty Amplifier for W-CDMA Handset Applications

  • Koo, Chan-Hoe;Kim, Jung-Hyun;Kwon, Young-Woo
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.151-153
    • /
    • 2010
  • A highly efficient linear and compactly integrated series-type Doherty power amplifier (PA) has been developed for wideband code-division multiple access handset applications. To overcome the size limit of a typical Doherty amplifier, all circuit elements, such as matching circuits and impedance transformers, are fully integrated into a single monolithic microwave integrated circuit (MMIC). The implemented PA shows a very low idle current of 25 mA and an excellent power-added efficiency of 25.1% at an output power of 19 dBm by using an extended Doherty concept. Accordingly, its average current consumption was reduced by 51% and 41% in urban and suburban environments, respectively, when compared with a class-AB PA. By adding a simple predistorter to the PA, the PA showed an adjacent channel leakage ratio better than -42 dBc over the whole output power range.

Design and Fabrication of the MMIC frequency doubler for 29 ㎓ local Oscillators

  • Kim, Sung-Chan;Kim, Jin-Sung;Kim, Byeong-Ok;Shin, Dong-Hoon;Rhee, Jin-Koo;Kim, Do-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1062-1065
    • /
    • 2002
  • We demonstrate the MMIC(monolithic microwave integrated circuit) frequency doublers generating stable and low-cost 29 ㎓ local oscillator signals from 14.5 ㎓ input signals. These devices were designed and fabricated by using the MMIC integration process of 0.1 $\mu\textrm{m}$ gate-length PHEMTs (pseudomorphic high electron mobility transistors). The measurements showed S$\_$11/ of -9.2 dB at 14.5 ㎓, S/sub22/ of -18.6 dB at 29 ㎓ and a minimum conversion loss of 18.2 dB at 14.5 ㎓ with an input power of 6 dBm. The fundamental signal of 14.5㎓ was suppressed below 15.2 dBc compared with the second harmonic signal at the output port, and the isolation characteristics of the fundamental signal between the input and the output port were maintained above 30 dB in the frequency range of 10.5 ㎓ to 18.5 ㎓.

  • PDF

Vertical Integration of MM-wave MMIC's and MEMS Antennas

  • Kwon, Young-Woo;Kim, Yong-Kweon;Lee, Sang-Hyo;Kim, Jung-Mu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.169-174
    • /
    • 2006
  • In this work, we demonstrate a novel compact mechanical beam steering transmitter based on a direct vertical integration of a 2-D MEMS-based mechanical beam steering antenna with a VCO on a single silicon platform. By eliminating the long feed lines and waveguide metal blocks, the radiation pattern has been improved vastly, resulting in an almost ideal pattern at every scan angle. The losses incurred by the feed lines and phase shifters are also eliminated, which allows the transmitter to be implemented using only a single VCO. The system complexity has been greatly reduced with a total module size of only 1.5 cm ${\times}$ 1.5 cm ${\times}$ 0.4 cm. This work demonstrates that RF MEMS can be a key enabling technology for high-level integration.

Design and fabrication of the MMIC frequency doubler for 29 GHz local oscillator application (29GHz 국부 발진 신호용 MMIC 주파수 체배기의 설계 및 제작)

  • Kim, Jin-Sung;Lee, Seong-Dae;Lee, Bok-Hyoung;Kim, Sung-Chan;Sul, Woo-Suk;Lim, Byeong-Ok;Kim, Sam-Dong;Park, Hyun-Chang;Park, Hyung-Moo;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.11
    • /
    • pp.63-70
    • /
    • 2001
  • We demonstrate the MMIC (monolithic microwave integrated circuit) frequency doublers generating stable and low-cost 29 GHz local oscillator signals from 14.5 GHz input signals. These devices were designed and fabricated by using the M MIC integration process of $0.1\;{\mu}m$ gate-length PHEMTs (pseudomorphic high electron mobility transistors) and passive components. The measurements showed S11 or -9.2 dB at 145 GHz, S22 of -18.6 dG at 29 GHz and a minimum conversion loss of 18.2 dB at 14.5 GHz with an input power or 6 dBm. Fundamental signal of 14.5 GHz were suppressed below 15.2 dBe compared to the second harmonic signal at the output port, and the isolation characteristics of fundamental signal between the input and the output port were maintained above :i0 dB in the frequency range 10.5 GHz to 18.5 GHz. The chip size of the fabricated MMIC frequency doubler is $1.5{\times}2.2\;mm^2$.

  • PDF

Reduced Hybrid Ring Coupler Using Surface Micromachining Technology for 94-GHz MMIC Applications

  • Uhm, Won-Young;Beak, Tae-Jong;Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.246-251
    • /
    • 2016
  • In this study, we developed a reduced 94 GHz hybrid ring coupler on a GaAs substrate in order to demonstrate the possibility of the integration of various passive components and MMICs in the millimeter-wave range. To reduce the size of the hybrid ring coupler, we used multiple open stubs on the inside of the ring structure. The chip size of the reduced hybrid ring coupler with multiple open stubs was decreased by 62% compared with the area of the hybrid ring coupler without open stubs. Performance in terms of the loss, isolation, and phase difference characteristics exhibited no significant change after the use of the multiple open stubs on the inside of the ring structure. The reduced hybrid ring coupler showed excellent coupling loss of $3.87{\pm}0.33dB$ and transmission loss of $3.77{\pm}0.72dB$ in the measured frequency range of 90-100 GHz. The isolation and reflection were -48 dB and -32 dB at 94 GHz, respectively. The phase differences between two output ports were $180^{\circ}{\pm}1^{\circ}$ at 94 GHz.

The study on Characteristics and Fabrication of L-C Library components (L-C Library 박막 소자의 제조와 특성에 관한 연구)

  • Kim, In-Sung;Min, Bok-Ki;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.861-863
    • /
    • 2003
  • In this work, the preparations and characteristics of capacitors and inductors for RF IC as a integrated devices are investigated. These kinds of capacitors and inductors can be applicable to the passive components utilized in voltage controlled oscillator(VCO), low noise amplifier(LAN), mixer and synthesizer for mobile telecommunication of radio frequency band(900 MHz to 2.2GHz), and in a library of monolithic microwave integrated circuit(MMIC). The results show that these inductors and capacitors array for RF IC may be applicable to the RF IC passive components for mobile telecommunication.

  • PDF