• Title/Summary/Keyword: MMC HVDC system

Search Result 67, Processing Time 0.031 seconds

Application of MMC-HVDC System for Regulating Grid Voltage Based on Jeju Island Power System (제주계통의 전압조정을 위한 MMC-HVDC 시스템 응용)

  • Quach, Ngoc-Thinh;Kim, Eel-Hwan;Lee, Do-Heon;Kim, Ho-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.494-502
    • /
    • 2014
  • This paper presents a control method of the modular multilevel converter - high-voltage direct current (MMC-HVDC) system to regulate grid voltage on the basis of the Jeju Island power system. In this case, the MMC-HVDC system is controlled as a static synchronous compensator (Statcom) to exchange the reactive power with the power grid. The operation of the MMC-HVDC system is verified by using the PSCAD/EMTDC simulation program. The Jeju Island power system is first established on the basis of the parameters and measured data from the real Jeju Island power system. This power system consists of two line-commutated converter - high-voltage direct current (LCC-HVDC) systems, two Statcom systems, wind farms, thermal power plants, transformers, and transmission and distribution lines. The proposed control method is then applied by replacing one LCC-HVDC system with a MMC-HVDC system. Simulation results with and without using the MMC-HVDC system are compared to evaluate the effectiveness of the control method.

A Study on the Benefit Estimation of MMC VSC-HVDC System (MMC VSC-HVDC의 경제성평가에 관한 연구)

  • Sun, Hwi-il;Park, Seong-Mi;Yoo, Dong-Wook;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.65-71
    • /
    • 2020
  • Recently, interest in the DC transmission is rapidly increasing worldwide. In many countries and leading companies are prior to the aggressive development of HVDC technology and application. Especially, VSC-HVDC system has been widely applied to transfer power at long distance between power plant and power consumption area. Therefore in this paper, we analyzed the benefit-cost of VSC-HVDC system which has more advantages than existing transmission system. The proposed system is MMC(Modular Multilevel Converter) VSC-HVDC system that have stability of Power Grid, interconnect Large-scale New Power Generation Plants by prevents Blackout. And MMC VSC-HVDC system Reduced the loss importing foreign systems. And the benefits were calculated in four stages, and the costs were applied to the actual project. By evaluating the various avoidance costs compared to the benefit-cost, it was confirmed that MMC VSC-HVDC system was advantageous in system stability and economic and social benefits.

Frequency and Voltage Control Strategies of the Jeju Island Power System Based on MMC-HVDC Systems

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Song, Seung-Ho;Kim, Eel-Hwan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.204-211
    • /
    • 2018
  • At present, one of two LCC-HVDC systems is responsible for controlling the grid frequency of the Jeju Island Power System (JIPS). The grid voltage is regulated by using STATCOMs. However, these two objectives can be achieved in one device that is called by a modular multilevel converter-high voltage direct current (MMC-HVDC) system. Therefore, this paper proposes frequency and voltage control strategies for the JIPS based on a MMC-HVDC system. In this case, the ancillary frequency and voltage controllers are implemented into the MMC-HVDC system. The modelling of the JIPS is done based on the parameters and measured data from the real JIPS. The simulation results obtained from the PSCAD/EMTDC simulation program are confirmed by comparing them to measured data from the real JIPS. Then, the effect of the MMC-HVDC system on the JIPS will be tested in many cases of operation when the JIPS operates with and without STATCOMs. The objective is to demonstrate the effectiveness of the proposed control strategy.

VPI-based Control Strategy for a Transformerless MMC-HVDC System Under Unbalanced Grid Conditions

  • Kim, Si-Hwan;Kim, June-Sung;Kim, Rae-Young;Cho, Jin-Tae;Kim, Seok-Woong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2319-2328
    • /
    • 2018
  • This paper introduces a control method for a transformerless MMC-HVDC system. The proposed method can effectively control the grid currents of the MMC-HVDC system under unbalanced grid conditions such as a single line-to-ground fault. The proposed method controls the currents of the positive sequence component and the negative sequence component without separating algorithms. Therefore, complicated calculations for extracting the positive sequence and the negative sequence component are not required. In addition, a control method to regulate a zero sequence component current under unbalanced grid conditions in the transformerless MMC-HVDC system is also proposed. The validity of the proposed method is verified through PSCAD/EMTDC simulation.

Maximum Modulation Index of VSC HVDC based on MMC Considering Compensation Signals and AC Network Conditions (전력계통 전압 변동과 순환 전류 보상 성분을 고려한 MMC 기반 VSC-HVDC의 최대 변조 지수 선정에 관한 연구)

  • Kim, Chan-Ki;Belayneh, Negesse Belete;Park, Chang-Hwan;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.61-67
    • /
    • 2020
  • This study deals with the modulation index (MI) of a voltage source converter (VSC) HVDC system based on a modular multilevel converter (MMC). In the two-level converter, the purpose of the MI is to maximize the achievable AC voltage of the converter from a fixed DC voltage. Unlike that in a two-level converter, the MI in the MMC topology plays a role in making the converter a voltage source using a capacitor. The circulating current in the MMC distorts the AC voltage reference, and the distortion affects the MI. In addition, the AC network conditions, such as AC voltage variation and reactive power, affect the MI. Therefore, the MI should be optimized with consideration of internal and external factors. This study proposes a method to optimize the MI of an MMC HVDC system.

Trade-Off Strategies in Designing Capacitor Voltage Balancing Schemes for Modular Multilevel Converter HVDC

  • Nam, Taesik;Kim, Heejin;Kim, Sangmin;Son, Gum Tae;Chung, Yong-Ho;Park, Jung-Wook;Kim, Chan-Ki;Hur, Kyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.829-838
    • /
    • 2016
  • This paper focuses on the engineering trade-offs in designing capacitor voltage balancing schemes for modular multilevel converters (MMC) HVDC: regulation performance and switching loss. MMC is driven by the on/off switch operation of numerous submodules and the key design concern is balancing submodule capacitor voltages minimizing switching transition among submodules because it represents the voltage regulation performance and system loss. This paper first introduces the state-of-the-art MMC-HVDC submodule capacitor voltage balancing methods reported in the literatures and discusses the trade-offs in designing these methods for HVDC application. This paper further proposes a submodule capacitor balancing scheme exploiting a control signal to flexibly interchange between the on-state and the off-state submodules. The proposed scheme enables desired performance-based voltage regulation and avoids unnecessary switching transitions among submodules, consequently reducing the switching loss. The flexibility and controllability particularly fit in high-level MMC HVDC applications where the aforementioned design trade-offs become more crucial. Simulation studies for MMC HVDC are performed to demonstrate the validity and effectiveness of the proposed capacitor voltage balancing algorithm.

Advanced Small-Signal Model of Multi-Terminal Modular Multilevel Converters for Power Systems Based on Dynamic Phasors

  • Hu, Pan;Chen, Hongkun;Chen, Lei;Zhu, Xiaohang;Wang, Xuechun
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.467-481
    • /
    • 2018
  • Modular multilevel converter (MMC)-based high-voltage direct current (HVDC) presents attractive technical advantages and contributes to enhanced system operation and reduced oscillation damping in dynamic MMC-HVDC systems. We propose an advanced small-signal multi-terminal MMC-HVDC based on dynamic phasors and state space for power system stability analysis to enhance computational accuracy and reduce simulation time. In accordance with active and passive network control strategies for multi-terminal MMC-HVDC, the matchable small-signal stability models containing high harmonics and dynamics of internal variables are conducted, and a related theoretical derivation is carried out. The proposed advanced small-signal model is then compared with electromagnetic-transient and traditional small-signal state-space models by adopting a typical multi-terminal MMC-HVDC network with offshore wind generation. Simulation indicates that the advanced small-signal model can successfully follow the electromechanical transient response with small errors and can predict the damped oscillations. The validity and applicability of the proposed model are effectively confirmed.

A Study of Circulating Current in MMC based HVDC System under an Unbalanced Grid Condition (불평형 전원 조건에서 MMC 기반 HVDC 시스템 순환전류에 관한 연구)

  • Do, Won-Seok;Kim, Si-Hwan;Kim, Tae-Jin;Kim, Rae-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1193-1201
    • /
    • 2015
  • This paper presents a study of circulating current of modular multi-level converter (MMC) based a high voltage direct current (HVDC) system under unbalanced grid conditions. Due to the connection of a dependent DC source in each phase, the MMC system inherently generates the power ripple of double-line-frequency components in the AC-side and as a result, the additional sinusoidal current named circulating current flows through the each arm. Reliability improvement of HVDC system under an unbalanced grid condition is one of the important criteria. Generally, the modeling of the circulating current is based on the power relation between DC-side and AC-side. However, the method is not perfectly matched in the MMC system due to the difference of the structural characteristic. In this paper, improved modeling method of circulating current is proposed, which is based on the inner arm power. The proposed method is verified by several simulations to have good agreement of the circulating current components.

The Valve Redundancy Determination for HVDC Converter based on Modular Multilevel Converter (MMC기반의 전압형 HVDC 밸브의 여유율 결정)

  • Kim, Chan-Ki;Choi, Soon-Ho;Kang, Ji-Won;Yoon, Yong-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.328-334
    • /
    • 2016
  • This paper examines the reliability of a VSC-HVDC valve based on a modular multilevel converter (MMC) HVDC system. The main objective of this paper is to determine the redundancy of the MMC valve. Several prediction methods are introduced, but the binomial failure method is selected to be used. To determine the availability and reliability prediction of MMC valve, which comprises a DC/DC converter, a gate driver, a capacitor, and an IGBT, the failure data of the MMC module are used as the tracking data according to the experimental result. This method uses a simplified equation to find the valve redundancy by transforming the binomial function to De Moivre's formula. This method is the first to be used to find the valve margin.

Control of a VSC-HVDC Transmission System based on Modular Multilevel Converters (모듈형 멀티레벨 컨버터로 구성된 고압직류 송전시스템의 제어)

  • Cui, Shenghui;Sul, Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.341-342
    • /
    • 2014
  • VSC-HVDC system based on Modular Multilevel Converter (MMC) is an emerging technology since compared to the conventional VSC-HVDC system an MMC presents several advantages such as modularity, low dv/dt, low harmonics, and low switching losses. In this paper, a comprehensive control strategy of an MMC-based VSC-HVDC system is proposed. In contrast to the conventional system control strategy, the DC side of the MMC operates as a controlled voltage source by the proposed method, and the dynamics of the transmission line voltage and current can be actively controlled. Validity of the proposed strategy was verified by 201-level full-scale computer simulation.

  • PDF