• Title/Summary/Keyword: ML-based Data Analysis

Search Result 107, Processing Time 0.036 seconds

Lifelog Analysis and Future using Artificial Intelligence in Healthcare (헬스케어에서 인공지능을 활용한 라이프로그 분석과 미래)

  • Park, Minseo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2022
  • Lifelog is a digital record of an individual collected from various digital sensors, and includes activity amount, sleep information, weight change, body mass, muscle mass, fat mass, etc. Recently, as wearable devices have become common, a lot of high-quality lifelog data is being produced. Lifelog data shows the state of an individual's body, and can be used not only for individual health care, but also for causes and treatment of diseases. However, at present, AI/ML-based correlation analysis and personalization are not reflected. It is only at the level of presenting simple records or fragmentary statistics. Therefore, in this paper, the correlation/relationship between lifelog data and disease, and AI/ML technology inside lifelog data are examined, and furthermore, a lifelog data analysis process based on AI/ML is proposed. The analysis process is demonstrated with the data collected in the actual Galaxy Watch. Finally, we propose a future convergence service roadmap including lifelog data, diet, health information, and disease information.

Machine Learning in FET-based Chemical and Biological Sensors: A Mini Review

  • Ahn, Jae-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This mini review summarizes some of the recent advances in machine-learning (ML)-driven chemical and biological sensors. Specific focus is on field-effect-transistor (FET)-based sensors with a description of their structures and detection mechanisms. Key ML techniques are briefly reviewed for an audience not familiar with the basic principles. We mainly discuss two aspects: (1) data analysis based on ML and (2) ML applied to sensor design. In conclusion, the challenges and opportunities for the advancement of ML-based sensors are briefly considered.

Development of ML and IoT Enabled Disease Diagnosis Model for a Smart Healthcare System

  • Mehra, Navita;Mittal, Pooja
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.1-12
    • /
    • 2022
  • The current progression in the Internet of Things (IoT) and Machine Learning (ML) based technologies converted the traditional healthcare system into a smart healthcare system. The incorporation of IoT and ML has changed the way of treating patients and offers lots of opportunities in the healthcare domain. In this view, this research article presents a new IoT and ML-based disease diagnosis model for the diagnosis of different diseases. In the proposed model, vital signs are collected via IoT-based smart medical devices, and the analysis is done by using different data mining techniques for detecting the possibility of risk in people's health status. Recommendations are made based on the results generated by different data mining techniques, for high-risk patients, an emergency alert will be generated to healthcare service providers and family members. Implementation of this model is done on Anaconda Jupyter notebook by using different Python libraries in it. The result states that among all data mining techniques, SVM achieved the highest accuracy of 0.897 on the same dataset for classification of Parkinson's disease.

Machine learning of LWR spent nuclear fuel assembly decay heat measurements

  • Ebiwonjumi, Bamidele;Cherezov, Alexey;Dzianisau, Siarhei;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3563-3579
    • /
    • 2021
  • Measured decay heat data of light water reactor (LWR) spent nuclear fuel (SNF) assemblies are adopted to train machine learning (ML) models. The measured data is available for fuel assemblies irradiated in commercial reactors operated in the United States and Sweden. The data comes from calorimetric measurements of discharged pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies. 91 and 171 measurements of PWR and BWR assembly decay heat data are used, respectively. Due to the small size of the measurement dataset, we propose: (i) to use the method of multiple runs (ii) to generate and use synthetic data, as large dataset which has similar statistical characteristics as the original dataset. Three ML models are developed based on Gaussian process (GP), support vector machines (SVM) and neural networks (NN), with four inputs including the fuel assembly averaged enrichment, assembly averaged burnup, initial heavy metal mass, and cooling time after discharge. The outcomes of this work are (i) development of ML models which predict LWR fuel assembly decay heat from the four inputs (ii) generation and application of synthetic data which improves the performance of the ML models (iii) uncertainty analysis of the ML models and their predictions.

Machine learning application in ischemic stroke diagnosis, management, and outcome prediction: a narrative review (허혈성 뇌졸중의 진단, 치료 및 예후 예측에 대한 기계 학습의 응용: 서술적 고찰)

  • Mi-Yeon Eun;Eun-Tae Jeon;Jin-Man Jung
    • Journal of Medicine and Life Science
    • /
    • v.20 no.4
    • /
    • pp.141-157
    • /
    • 2023
  • Stroke is a leading cause of disability and death. The condition requires prompt diagnosis and treatment. The quality of care provided to patients with stroke can vary depending on the availability of medical resources, which in turn, can affect prognosis. Recently, there has been growing interest in using machine learning (ML) to support stroke diagnosis and treatment decisions based on large medical data sets. Current ML applications in stroke care can be divided into two categories: analysis of neuroimaging data and clinical information-based predictive models. Using ML to analyze neuroimaging data can increase the efficiency and accuracy of diagnoses. Commercial software that uses ML algorithms is already being used in the medical field. Additionally, the accuracy of predictive ML models is improving with the integration of radiomics and clinical data. is expected to be important for improving the quality of care for patients with stroke.

Performance Analysis of SyncML Server System Using Stochastic Petri Nets

  • Lee, Byung-Yun;Lee, Gil-Haeng;Choi, Hoon
    • ETRI Journal
    • /
    • v.26 no.4
    • /
    • pp.360-366
    • /
    • 2004
  • Synchronization Markup Language (SyncML) is a specification of a common data synchronization framework for synchronizing data on networked devices. SyncML is designed for use between mobile devices that are intermittently connected to a network and network services that are continuously available on the network. We have designed and developed a data synchronization system based on the SyncML protocol and evaluated the throughput of the system using the stochastic Petri nets package (SPNP) and analyzed the relationship between the arrival rate and the system resources. Using this model, we evaluate various performance measures in different situations, and we estimate the relationship between the arrival rate and the system resources. From the results, we can estimate the optimal amount of resources due to the arrival rate before deploying the developed system.

  • PDF

Biomarker-Based Exposure to Phthalates and Related Factors with Demographics (프탈레이트의 노출 정도 및 인구학적 특성과의 관련요인)

  • 구정완;이강숙;박정일;구현정;이병무
    • Toxicological Research
    • /
    • v.19 no.4
    • /
    • pp.297-301
    • /
    • 2003
  • To investigate biomarker-based exposure to phthalates and related factors with demographics, 100 subjects who had participated in comprehensive health check-up were selected. We collected demographics through questionnaires and analyzed urine samples for 5 phthalates. Statistical likelihoods and regression methods were applied for data analysis using censored data. The highest levels of urine phthalates were 216$\mu\textrm{g}$/ml in di-isodecyl phthalate, 29.0$\mu\textrm{g}$/ml in di-butyl phthalate, 5.78$\mu\textrm{g}$/ml in di-(2-ethylhexyl) phthalate. The median values of di-(2-ethylhexyl) phthalate were 0.2340 $\mu\textrm{g}$/ml for male smokers, 0.0399 $\mu\textrm{g}$/ml for male non-smokers and 0.0085 $\mu\textrm{g}$/ml for female non-smokers, respectively. Di-(2-ethylhexyl) phthalate, benzyl butyl phthalate and di-isodecyl phthalate were higher in males than in females. In addition, mono-2-ethylhexyl phthalate was decreased with age. Our findings suggest that there might be significant demographic variations in exposure and/or metabolism of phthalates, and that health-risk assessment for phthalate exposure in humans should consider different potential risk groups.

Restricted maximum likelihood estimation of a censored random effects panel regression model

  • Lee, Minah;Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.4
    • /
    • pp.371-383
    • /
    • 2019
  • Panel data sets have been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Maximum likelihood (ML) may be the most common statistical method for analyzing panel data models; however, the inference based on the ML estimate will have an inflated Type I error because the ML method tends to give a downwardly biased estimate of variance components when the sample size is small. The under estimation could be severe when data is incomplete. This paper proposes the restricted maximum likelihood (REML) method for a random effects panel data model with a censored dependent variable. Note that the likelihood function of the model is complex in that it includes a multidimensional integral. Many authors proposed to use integral approximation methods for the computation of likelihood function; however, it is well known that integral approximation methods are inadequate for high dimensional integrals in practice. This paper introduces to use the moments of truncated multivariate normal random vector for the calculation of multidimensional integral. In addition, a proper asymptotic standard error of REML estimate is given.

Data Processing of AutoML-based Classification Models for Improving Performance in Unbalanced Classes (불균형 클래스에서 AutoML 기반 분류 모델의 성능 향상을 위한 데이터 처리)

  • Lee, Dong-Joon;Kang, Ji-Soo;Chung, Kyungyong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.49-54
    • /
    • 2021
  • With the recent development of smart healthcare technology, interest in daily diseases is increasing. However, healthcare data has an imbalance between positive and negative data. This is caused by the difficulty of collecting data because there are relatively many people who are not patients compared to patients with certain diseases. Data imbalances need to be adjusted because they affect performance in ongoing learning during disease prediction and analysis. Therefore, in this paper, We replace missing values through multiple imputation in detection models to determine whether they are prevalent or not, and resolve data imbalances through over-sampling. Based on AutoML using preprocessed data, We generate several models and select top 3 models to generate ensemble models.

Production Equipment Monitoring System Based on Cloud Computing for Machine Manufacturing Tools

  • Kim, Sungun;Yu, Heung-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.197-205
    • /
    • 2022
  • The Cyber Physical System(CPS) is an important concept in achieving SMSs(Smart Manufacturing Systems). Generally, CPS consists of physical and virtual elements. The former involves manufacturing devices in the field space, whereas the latter includes the technologies such as network, data collection and analysis, security, and monitoring and control technologies in the cyber space. Currently, all these elements are being integrated for achieving SMSs in which we can control and analyze various kinds of producing and diagnostic issues in the cyber space without the need for human intervention. In this study, we focus on implementing a production equipment monitoring system related to building a SMS. First, we describe the development of a fog-based gateway system that links physical manufacturing devices with virtual elements. This system also interacts with the cloud server in a multimedia network environment. Second, we explain the proposed network infrastructure to implement a monitoring system operating on a cloud server. Then, we discuss our monitoring applications, and explain the experience of how to apply the ML(Machine Learning) method for predictive diagnostics.