• Title/Summary/Keyword: ML estimation

Search Result 226, Processing Time 0.026 seconds

A Consideration on ML Blind Signal Estimation based on Finite-Alphabet Characteristic in QPSK Modulation (QPSK 신호 입력시스템에서의 유한 알파벹 기반 ML 블라인드 신호 추정 비교)

  • Kwon, S.M.;Kim, S.J.;Lee, J.M.;Kim, C.K.;Cheon, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.685-688
    • /
    • 2003
  • In this paper, a performance comparison between two blind signal estimation algorithms in a LTI channel is considered. The two algorithms, Iterative Least-Squares with Projection (ILSP) and a modified ILSP, are based on the finite-alphabet property of input symbols. This case typically arises in a multiple access system with a sensor array antenna at the receiving end. We start with the formulation of a maximum-likelihood (ML) estimation problem under an additive white Gaussian noise assumption. A blind ML estimator is derived with its iterative algorithm for calculation. Then we narrow down the consideration of this problem to QPSK case so that a modified algorithm is proposed for $\pi$/4-QPSK case. The modified version is compared with the original ILSP algorithm in terms of the rate of the convergence to global minima. A computer simulation shows that the modified algorithm gives a better performance. This result implies that the performance of the blind separation algorithms may be greatly improved by adopting a smart coding scheme with rich structure.

  • PDF

Pilot-Aided Iterative Frequency Offset Estimation for Digital Video Broadcasting Systems (디지털 비디오 방송 시스템에서의 파일럿을 이용한 반복적 주파수 옵셋 추정방법)

  • Lee, Kyung-Taek;Seo, Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.484-489
    • /
    • 2007
  • The main disadvantage of orthogonal frequency division multiplexing (OFDM) systems is its sensitivity to carrier frequency offset and timing offset. This paper proposes a simple way of improving the performance of the integer frequency offset (IFO) estimator in OFDM-based digital video broadcasting (DVB) system. By modifying the conventional maximum likelihood (ML) estimator to have multi-stage estimation strategy, IFO estimator is derived. Simulations indicate that the proposed IFO estimator works robustly with reduced computational burden when compared to ML estimator.

Blind Frequency Offset Estimation Scheme based on ML Criterion for OFDM-based CR Systems in Non-Gaussian Noise (비정규 잡음 환경에서 OFDM 기반 CR 시스템을 위한 ML 기반 블라인드 주파수 옵셋 추정 기법)

  • Kim, Jun-Hwan;Kang, Seung-Goo;Baek, Jee-Hyeon;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.391-397
    • /
    • 2011
  • This paper investigates the frequency offset (PO) estimation scheme for the orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) systems. In the CR environments, the conventional FO estimation schemes for the OFDM systems experience significant performance degradation due to the effect of the non-Gaussian noise. In this paper, a novel FO estimation scheme based on the maximum likelihood criterion is proposed for the OFDM-based CR systems in non-Gaussian noise environments. The proposed scheme does not require a specific pilot structure and has a better estimation performance compared with that of the conventional scheme.

A Study for Co-channel Interference Cancelation Algorithm with Channel Estimation for WBAN System Application (WBAN 환경에서 채널 추정 기반의 공용 채널 간섭 제거 기술)

  • Choi, Won-Seok;Kim, Jeong-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6C
    • /
    • pp.476-482
    • /
    • 2012
  • In this paper, we analyze and compare several co-channel interference mitigation algorithms for WBAN application in 2.4 GHz ISM frequency bands. ML (Maximum Likelihood), OC (Optimal Combining) and MMSE (Minimum Mean Square Error) has been considered for the possible techniques for interference cancellation in view of the trade off between the performance and the complexity of implementation. Based on the channel model of IEEE 802.15.6 standard, simulation results show that ML and OC attains the lower BER performance than that of MMSE if we assume the perfect channel estimation. But, ML and OC have the additional requirement of implementation for his own and other users's channel estimation process, hence, besides the BER performance, the complexity of implementation and the sensitivity to channel estimation error should be considered since it requires the simple and small sized equipment for WBAN system application. In addition, the gap of detection BER performance between ML, OC and MMSE is much decreased under the imperfect channel estimation if we adopt real channel estimation process, therefore, in order to apply to WBAN system, the trade off between the BER performance and complexity of implemetation should be seriously considered to decide the best co-channel interference cancellation for WBAN system application.

Error Intensity Function Models for ML Estimation of Signal Parameter, Part I : Model Derivation (신호 파라미터의 ML 추정기법에 대한 에러 밀도 함수 모델에 관한 연구 I : 모델 정립)

  • Joong Kyu Kim
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.12
    • /
    • pp.1-11
    • /
    • 1993
  • This paper concentrates on models useful for analyzing the error performance of ML(Maximum Likelihood) estimators of a single unknown signal parameter: that is the error intensity model. We first develop the point process representation for the estimation error and the conditional distribution of the estimator as well as the distribution of error candidate point process. Then the error intensity function is defined as the probability dessity of the estimate and the general form of the error intensity function is derived. We then develop several intensity models depending on the way we choose the candidate error locations. For each case, we compute the explicit form of the intensity function and discuss the trade-off among models as well as the extendability to the case of multiple parameter estimation.

  • PDF

Estimation of Seasonal Cointegration under Conditional Heteroskedasticity

  • Seong, Byeongchan
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.615-624
    • /
    • 2015
  • We consider the estimation of seasonal cointegration in the presence of conditional heteroskedasticity (CH) using a feasible generalized least squares method. We capture cointegrating relationships and time-varying volatility for long-run and short-run dynamics in the same model. This procedure can be easily implemented using common methods such as ordinary least squares and generalized least squares. The maximum likelihood (ML) estimation method is computationally difficult and may not be feasible for larger models. The simulation results indicate that the proposed method is superior to the ML method when CH exists. In order to illustrate the proposed method, an empirical example is presented to model a seasonally cointegrated times series under CH.

Maximum-likelihood Estimation of Radar Cross Section of a Swerling III Target (Swerling III 표적 RCS의 최대공산추정)

  • Jung, Young-Hun;Hong, Sun-Mog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.87-93
    • /
    • 2017
  • A maximum likelihood (ML) approach is presented for estimating the mean of radar cross section (RCS) of a Swerling III target and its numerical solution methods are discussed. The solution methods are based on an approximate expression for implementing the expectation maximization (EM) algorithm. The methods are evaluated and compared through Monte Carlo simulations in terms of estimation accuracy and computational efficiency to obtain a most efficient method for both Swerling I and Swerling III targets. The methods are also compared with a previously reported method based on heuristics.

Measurement of Prostate Phantom Volume Using Three-Dimensional Medical Imaging Modalities (3차원 의료영상진단기기를 이용한 가상 전립선 용적 측정)

  • Seoung, Youl-Hun;Joo, Yong-Hyun;Choe, Bo-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.285-291
    • /
    • 2010
  • Recently, advance on various modalities of diagnosing, prostate volume estimation became possible not only by the existing two-dimension medical images data but also by the three-dimensional medical images data. In this study, magnetic resonance image (MRI), computer tomography (CT) and ultrasound (US) were employed to evaluate prostate phantom volume measurements for estimation, comparison and analysis. For the prostate phantoms aimed at estimating the volume, total of 17 models were developed by using devils-tongue jelly and changing each of the 5ml of capacity from 20ml to 100ml. For the volume estimation through 2D US, the calculation of the diameter with C9-5Mhz transducer was conducted by ellipsoid formula. For the volume estimation through 3D US, the Qlab software (Philips Medical) was used to calculate the volume data estimated by 3D9-3Mhz transducer. Moreover, the images by 16 channels CT and 1.5 Tesla MRI were added by the method of continuous cross-section addition and each of imaginary prostate model's volume was yielded. In the statistical analysis for comparing the availability of volume estimation, the correlation coefficient (r) was more than 0.9 for all indicating that there were highly correlated, and there were not statistically significant difference between each of the correlation coefficient (p=0.001). Therefore, the estimation of prostate phantom volume using three-dimensional modalities of diagnosing was quite closed to the actual estimation.

Initialization of Cost Function for ML-Based DOA Estimation (ML 알고리즘 기반의 도래각 추정을 위한 비용 함수의 초기화 방법 비교)

  • Jo, Sang-Ho;Lee, Joon-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.110-116
    • /
    • 2008
  • Maximum likelihood(ML) diretion-of-arrival(DOA) estimation is essentially optimization of multivariable nonlinear cost function. Since the final estimate is highly dependent on the initial estimate, an initialization is critical in nonlinear optimization. We propose a multi-dimensional(M-D) search scheme of uniform exhaustive search and improved exhaustive search. Improved exhaustive search is superior to uniform exhaustive search in terms of the computational complexity and the accuracy of the estimates.

ML-Based and Blind Frequency Offset Estimators Robust to Non-Gaussian Noise in OFDM Systems (비정규 잡음에 강인한 ML기반 OFDM 블라인드 주파수 옵셋 추정기)

  • Shim, Jeongyoon;Yoon, Seokho;Kim, Kwang Soon;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.4
    • /
    • pp.365-370
    • /
    • 2013
  • In this paper, we propose robust blind estimators for the frequency offset of orthogonal frequency division multiplexing in non-Gaussian noise environments. We first propose a maximum likelihood (ML) estimator in non-Gaussian noise modeled as a complex isotropic Cauchy process, and then, a simpler estimator based on the ML estimator is proposed. From numerical results, we confirm that the proposed estimators are robust to the non-Gaussian noise and have a better estimation performance over the conventional estimator in non-Gaussian noise environments.