Bayesian SPECT 영상재구성에 있어서 정교한 형태의 사전정보를 사용할 경우 bias 및 variance와 같은 통계적 차원에서의 정량적 성능을 향상시킬 수 있다. 특히, "thin plate" 와 같은 고차의 smoothing 사전정보는 "membrane"과 같은 일반적인 다른 사전 정보에 비해 bias를 개선시키는 것으로 알려져 있다. 그러나, 이와 같은 장점은 영상재구성 알고리즘에 내재하는 hyperparameters의 값을 최적으로 선택하였을 경우에만 적용된다. 본 연구에서는 thin plate와 membrane의 두가지 대표적인 사전정보를 포함하는 영상재구성 알고리즘의 정량적 성능에 대해 집중 고찰한다. 즉, 알고리즘에 내재하는 hyperparameters 가 통계적 차원에서 bias와 variance에 어떠한 영향을 미치는지 관찰한다. 실험에서 Monte Carlo noise trials를 사용하여 bias와 variance를 계산하며, 각 결과를 ML-EM 및 filtered backprojection으로부터 얻어진 bias 및 variance와 비교한다. 결론적으로 thin plate와 같은 고차의 사전정보는 hyperparameters의 선택에 민감하지 않으며, hyperparameters 값의 전 범위에 걸쳐 bias를 개선시킴을 보인다. 걸쳐 bias를 개선시킴을 보인다.
본 논문에서는 Maximum Likelihood(ML) 알고리즘을 변형한 Suboptimal ML 타이밍 검출기를 제안한다. 본 논문에서 제안하는 Suboptimal ML방식은 참조신호 생성과정이 Early-Late gate 또는 ML 방식에 비해 간단하면서도 타이밍 검출기의 이득은 거의 동일한 값을 얻을 수 있다. 또한, 타이밍 추적기는 데이터 판별을 이용하기 때문에 적은 타이밍 오차 범위만이 추적 가능하다. 즉, 펄스폭이 0.7ns인 4차 가우시안 모노사이클을 사용하였을 경우, 추적 가능한 타이밍 오차는 ${\pm}0.06ns$이다. 따라서 탐색기는 높은 정확도를 갖는 획득성능을 갖고 있어야 한다. 성능 분석은 잡음뿐만아니라 송신기와 수신기의 펄스 생성과정에서 사용되는 오실레이터 지터를 고려한다. 컴퓨터 모의 실험 결과는 타이밍 검출기의 평균과 분산 및 타이밍 추적기의 추적 성능을 보여준다. 그리고 이동성에 의해 타이밍 오차가 점차적으로 증가하는 경우를 가정하여 추적성능을 제시한다. 본 논문은 타이밍 추적기의 성능을 제시하기 위해 하나의 복조기인 단인 상관기만을 고려한다.
배열센서를 사용한 표적의 위치 추정은 레이다 및 소나에서 잘 알려진 문제이다. 최근에 Lee 등은 1 차원 수평 선배열 센서만을 사용하여 다중경로를 통해 들어오는 신호로부터 표적의 3 차원 위치를 추정하였다. 그러나 이 알고리즘에서 수중에서의 음속은 수심에 관계없이 일정하다고 가정하였기 때문에 음속이 수심에 따라 다양하게 변화하는 실제 수중환경에서는 그 추정성능이 현저히 저하된다. 따라서 본 논문에서는 표적의 거리, 깊이, 방위각으로 구성되는 3 차원 위치 추정을 위해 비균일 음속환경에서의 음파전달모델(ray propagation model)을 이용한 ML 기법(maximum likelihood estimation)을 적용하였으며 일정한 음속을 가정한 Lee 기법의 추정치를 초기값으로 한 탐색을 통해 ML 기법의 연산량을 감소시켰다.
최근 2개의 송신 안테나를 사용할 경우 수신측에서 궤환되는 위상 정보로 간단한 ML(maximum likelihood) 복호를 할 수 있는 OSM(orthogonal spatial multiplexing)이 제안되었다. 그러나 이 기법은 궤환 정보를 사용하지 않는 기존의 SM(spatial multiplexing)보다 성능 측면에서 떨어지는 단점이 있다. 따라서 본 논문에서는 2개의 송수신 안테나에 대해 기존의 OSM 구조와 선부호기를 직렬 연접하여 구성된 새로운 CSM(closed-loop SM)을 제안한다. 전산 실험 결과 제안된 기법은 기존의 SM과 OSM에 비해 4-QAM에 대해구는 각각 3dB와 5dB, 그리고 16-QAM에 대해서는 각각 1dB와 3dB의 성능 향상을 보여준다. 그리고 제안된 기법에 대하여 ML 복호 성능과 거의 동일한 성능을 가지면서 더불어 수신단 복호 복잡도를 크게 줄일 수 있는 새로운 복호 알고리즘도 추가로 제안한다.
본 논문에서는 밀도 데이터로부터 다양한 벡터장 패턴을 시각화하는 새로운 방법을 제안한다. 이를 위해 물리 기반 시뮬레이션과 기하학적 처리에서 사용되는 이동최소제곱(Moving least squares, MLS)을 이용한다. 하지만 일반적인 MLS는 벡터기반의 제약조건을 통해 고차 보간되기 때문에 밀도의 특성을 고려하지 못한다. 본 논문에서는 입력 데이터에 내포되어 있는 밀도의 특성을 효율적으로 고려하기 위해 몬테카를로 기반의 가중치를 MLS에 통합하여 다양한 형태의 백터장을 표현할 수 있도록 알고리즘을 설계한다. 결과적으로 일반적인 MLS와 발산제약 기반의 MLS 같은 기존 기법으로는 표현하기 힘든 디테일한 벡터장을 실험을 통해 보여준다.
미사일의 동특성은 공력계수(aerodynamic coefficients)들의 구조 및 그 계수값에 의해 결정된다. 현재까지 공력계수는 풍동시험(wind tunnel test)에 의한 모형법으로 구하는 것이 보편적이었으나 모형과 실제 시스템의 차이에 의해 발생하는 오차, 풍동시험의 오차, 모형의 스케일 팩터(scale factor)오차, 실제 대기조건의 특성에 의한 오차 등에 의해, 시제품을 이용한 실제 비행시험 결과가 풍동시험 모델을 이용한 컴퓨터 시뮬레이션(computer simulation)의 가상 비행 데이타와 차이를 나타내게 된다. 이러한 차이를 감소시키기 위하여 필터 이론을 적용하기 위해서는 수학적 계수 모델이 필요하게 된다. 본 연구에서는 풍동시험모델로부터 3가지의 수학적 모델을 가정하고 이를 이용하여 확장칼만필터(extended Kalman Filter: EKF)와 최대공산법(maximum likelihood method :ML)을 각각 적용시켰을때 추정된 계수치에 의한 가상비행데이타와, 풍동시험모델에 의한 가상비행데이타를 비교하여, 수학적 계수 모델 설정에 따른 각 알고리즘의 추정결과를 알아보고, 이에의해 계수 모델 설정의 방법 및 기준, 그리고 계수구조 설정에 따른 EKF와 ML의 성질을 조사하였다.
항공기의 자동 착륙 알고리즘을 위한 고 정밀 유도방식에 IBLS(Integrity Beacons Landing System)나 MLS(Microwave Landing System)와 같은 유도 제어 방식을 사용하여 유인 항공기나 무인 항공기의 유도 착륙에 사용하고 있다. 당 연구에서는 무인항공기의 자동 착륙을 위한 실제적인 요구사항들이 분석되었고, 자동 착륙 유도장치로 IBLS와 MLS가 선택되어 각각의 기능과 특성들이 수학적으로 모델링 되었다. 또한 고전제어와 최적제어의 2가지 방식으로 무인항공기의 자동 착륙을 통제하기 위한 autopilot이 설계되어 그 유효성과 특징들이 분석되었다. IBLS, MLS, autopilot, 그리고 이러한 자동 착륙 유도제어 시스템이 적용되는 대상체인 무인항공기와 대기환경 및 외란에 대한 수학적 모델들은 Simulink와 ANSI C를 사용하여 단위 S/W 모듈들로 작성되었고, 여기에 GUI모듈이 추가되어 하나의 통합 시뮬레이션 S/W가 완성되었다. 모의시험평가는 총 2단계로 구성되었는데, 대기 외란이 주어졌을 때 IBLS와 MLS의 유효성을 1차적으로 검증하였고, 2단계 모의수치실험에서는 MLS 유도센서 방식에 따른 고전제어기 및 최적제어기의 항공기 종 방향 운동에 대한 강인성 비교를 시도하였다.
Most pattern classifiers have been designed based on the ML (Maximum Likelihood) training algorithm which is simple and relatively powerful. The ML training is an efficient algorithm to individually estimate the model parameters of each class under the assumption that all class models in a classifier are statistically independent. That assumption, however, is not valid in many real situations, which degrades the performance of the classifier. In this paper, we propose a minimum-error-rate training algorithm based on the MAP (Maximum a Posteriori) approach. The algorithm regards the normalized outputs of the classifier as estimates of the a posteriori probability, and tries to maximize those estimates. According to Bayes decision theory, the proposed algorithm satisfies the condition of minimum-error-rate classificatin. We apply this algorithm to NPM (Neural Prediction Model) for speech recognition, and derive new disrminative training algorithms. Experimental results on ten Korean digits recognition have shown the reduction of 37.5% of the number of recognition errors.
머신러닝(ML, Machine Learning)기반 응용에서의 인식성능은 적용된 모델의 종류와 크기, 학습환경 및 학습에 사용되는 데이터 등 다양한 요인에 따라 결정된다. 특히 학습에 사용되는 데이터가 충분치 않을 경우 인식성능이 저하되거나 과적합(Overfitting)등의 문제가 발생하기도 한다. 이미지 인식을 주요 대상으로 하는 기존 연구들은 학습을 위한 데이터셋이 풍부하고 검증된 데이터셋을 사용하여 학습 및 인식성능을 평가할 수 있다. 하지만 사용된 센서, 인식의 대상, 인식 상황이 다른 특정 응용들의 경우 데이터셋을 직접 구축해야 한다. 이런 경우, ML모델의 성능은 데이터의 양과 품질에 따라 달라진다. 본 논문에서는 이용 가능한 학습용 데이터가 충분치 않은 움직임 인식응용에 효율적으로 사용될 수 있는 비모수 추정 방식의 일종인 커널 밀도 추정 알고리즘을 사용하여 학습용 데이터를 증폭한 후, 사용된 커널의 종류에 따라, 원본 데이터의 수 및 증폭 비율에 따라 증폭된 데이터가 원본 데이터의 특징을 잘 반영하는지 인식 정확도 변화를 토대로 비교 분석한다. 실험결과, 본 연구에서 사용한 움직임 인식응용에서는 좁은 대역폭을 가진 Tophat 커널로 증폭된 데이터셋에서 최대 14.31%의 인식 정확도 향상을 확인하였다.
본 논문에서는 대잠전의 필수 요소인 소노부이를 무인항공기가 최적의 배치로 투하할 수 있게 하는 방법을 제시한다. 이를 위해 Unity 게임엔진을 통해 음향 탐지 성능 분포도를 모사한 환경을 구성하고 Unity ML-Agents를 활용해 직접 구성한 환경과 외부에서 Python으로 작성한 강화학습 알고리즘이 서로 통신을 주고받으며 학습할 수 있게 하였다. 특히, 잘못된 행동이 누적되어 학습에 영향을 미치는 경우를 방지하고 비행체가 목표지점으로 최단 시간에 비행함과 동시에 소노부이가 최대 탐지 영역을 확보하기 위해 강화학습을 도입하고. 심층 확정적 정책 그래디언트(Deep Deterministic Policy Gradient: DDPG) 알고리즘을 적용하여 소노부이의 최적 배치를 달성하였다. 학습 결과 에이전트가 해역을 비행하며 70개의 타겟 후보들 중 최적 배치를 달성하기 위한 지점들만을 통과하였고 탐지 영역을 확보한 모습을 보면 겹치는 영역 없이 최단 거리에 있는 지점을 따라 비행하였음을 알 수 있다. 이는 최적 배치의 요건인 최단 시간, 최대 탐지 영역으로 소노부이를 배치하는 자율 비행체를 구현하였음을 의미한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.