• Title/Summary/Keyword: MIN module

Search Result 1,208, Processing Time 0.022 seconds

A Study on the Automation and Optimization of 9-(4-[$^{18}F$] Fluoro-3-hydroxymethylbutyl) Guanine Synthesis (9-(4-[$^{18}F$] Fluoro-3-hydroxymethylbutyl) guanine 합성의 자동화와 최적화에 관한 연구)

  • An, Jae-Seok;Hong, Sung-Tack;Kang, Se-Hun;Won, Woo-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.72-75
    • /
    • 2011
  • Purpose: The HSV1-tk reporter gene system is the most widely used system because of its advantage is that it is possible to monitor directly without the introduction of a separate reporter gene in case of HSV1-tk suicide gene therapy. This study was performed to automate 9-(4-[$^{18}F$] Fluoro-3-hydroxymethylbutyl) guanine ([$^{18}F$] FHBG) that are widely used as substrate for the HSV1-tk reporter gene in living organisms with positron emission tomography (PET) and find the optimized conditions of synthesis. Materials and Methods: Fully automated synthesis of [$^{18}F$] FHBG was performed using Explora-RN (CTI, USA) module. We have changed of reaction time (3, 5, 10 min) and temperature (110, 120, $130^{\circ}C$) for the optimized conditions of synthesis. Also we experimented to find the optimal concentration of precursor (5, 7, 10 mg). Results: [$^{18}F$] FHBG was purified by HPLC system and collected at around 10-12 min. Synthesis using Explora-RN module showed a $32.0{\pm}1.2%$ yield of radiochemical (decay corrected), the purity was greater than 98%. And the entire synthesis time was less than 48 min. Temperature of the highest synthesis yield was $130^{\circ}C$, reaction time was 5 minutes and concentration of precursor was 10 mg (recommended volume in manual) (n=36). In contrast to radiochemical yield of precursor 10 mg ($32{\pm}1.2%$), yield of 5 and 7 mg precursor was unstable. Conclusion: Automation of [$^{18}F$] FHBG synthesis at Explora-RN module has been completed. In addition, we were able to obtain optimized reaction time, temperature and concentration of precursor. Therefore this study would be provided more rapid synthesis and higher radiochemical yield.

  • PDF

Development of Autonomous Mobile Robot with Speech Teaching Command Recognition System Based on Hidden Markov Model (HMM을 기반으로 한 자율이동로봇의 음성명령 인식시스템의 개발)

  • Cho, Hyeon-Soo;Park, Min-Gyu;Lee, Hyun-Jeong;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.726-734
    • /
    • 2007
  • Generally, a mobile robot is moved by original input programs. However, it is very hard for a non-expert to change the program generating the moving path of a mobile robot, because he doesn't know almost the teaching command and operating method for driving the robot. Therefore, the teaching method with speech command for a handicapped person without hands or a non-expert without an expert knowledge to generate the path is required gradually. In this study, for easily teaching the moving path of the autonomous mobile robot, the autonomous mobile robot with the function of speech recognition is developed. The use of human voice as the teaching method provides more convenient user-interface for mobile robot. To implement the teaching function, the designed robot system is composed of three separated control modules, which are speech preprocessing module, DC servo motor control module, and main control module. In this study, we design and implement a speaker dependent isolated word recognition system for creating moving path of an autonomous mobile robot in the unknown environment. The system uses word-level Hidden Markov Models(HMM) for designated command vocabularies to control a mobile robot, and it has postprocessing by neural network according to the condition based on confidence score. As the spectral analysis method, we use a filter-bank analysis model to extract of features of the voice. The proposed word recognition system is tested using 33 Korean words for control of the mobile robot navigation, and we also evaluate the performance of navigation of a mobile robot using only voice command.

Mechanism of Gel Layer Removal for Intermittent Aeration in the MBR Process (MBR 공정에서 간헐공기주입에 따른 겔층 제거 메커니즘)

  • Noh Soo-Hong;Choi Young-Keun;Kwon Oh-Sung;Park Hee-Sung
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.188-195
    • /
    • 2006
  • The purpose of this study was to investigate the effect of an intermittent aeration mode to reduce the membrane fouling in a submerged membrane process using the specifically devised module (YEF 750D-2). The fluid velocity on the module increased with increasing the supplied air volume, and decreased with the increment of MLSS in the biological reactor. The reduction rate of the fluid velocity was found to be $3\times10^{-4}m{\cdot}min/sec{\cdot}L$ per 1,000 mg MLSS/L increased. In the operation of the intermittent aeration, the intermitted stop of the aeration provoked the formation of a cake layer on the gel layer which was previously formed during the aeration, resulting in the highly increased TMP level. However, the TMP level could be significantly lowered by the subsequent backwashing and aeration that effectively removed the cake along with the gel layer on the membrane surface. In this study, the optimum condition for the intermittent aeration was determined to be aeration for 20 sec and pause for 20 sec.

Calculation of Required Coolant Flow Rate for Photovoltaic-thermal Module Using Standard Meteorological Data and Thermal Analysis (표준기상 데이터와 열해석을 이용한 태양광열 모듈의 필요 냉각수량 산출)

  • Lee, Cheonkyu;Jeong, Hyo Jae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.18-22
    • /
    • 2022
  • Photovoltaics (PV) power generation efficiency is affected by meteorological factors such as temperature and wind speed. In general, it is known that the power generation amount decreases because photovoltaics panel temperature rises and the power generation efficiency decreases in summer. Photovoltaics Thermal (PVT) power generation has the ad-vantage of being able to produce heat together with power, as well as preventing the reduction in power generation efficien-cy and output due to the temperature rise of the panel. In this study, the amount of heat collected by season and time was calculated for photovoltaics thermal modules using the International Weather for Energy Calculations (IWEC) data provided by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Based on this, we propose a method of predicting the temperature of the photovoltaics panel using thermal analysis and then calculating the flow rate of coolant to improve power generation efficiency. As the results, the photovoltaics efficiencies versus time on January, April, July, and October in Jeju of the Republic of Korea were calculated to the range of 15.06% to 17.83%, and the maxi-mum cooling load and flow rate for the photovoltaics thermal module were calculated to 121.16 W and 45 cc/min, respec-tively. Though this study, it could be concluded that the photovoltaics thermal system can be composed of up to 53 modules with targeting the Jeju, since the maximum capacity of the coolant circulation pump of the photovoltaics thermal system applied in this study is 2,400 cc/min.

A Study on the Simulation-based Design for Optimum Arrangement of Buoyancy Modules in Marine Riser System (해양 라이저의 부력재 최적 배치를 위한 시뮬레이션 기반 설계 기법에 관한 연구)

  • Oh, Jae-Won;Park, Sanghyun;Min, Cheon-Hong;Cho, Su-Gil;Hong, Sup;Bae, Dae-Sung;Kim, Hyung-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • This paper reports a simulation-based design method for the optimized arrangement design of buoyancy modules in a marine riser system. A buoyancy module is used for the safe operation and structural stability of the riser. Engineers design buoyancy modules based on experience and experimental data. However, they are difficult to design because of the difficulty of conducting real sea experiments and quantifying the data. Therefore, a simulation-based design method is needed to tackle this problem. In this study, we developed a simulation-based design algorithm using a multi-body dynamic simulation and genetic algorithm to perform optimization arrangement design of a buoyancy module. The design results are discussed in this paper.

The Study on Evaluating Performances of Lab Sacle-Advanced $A_{2}O$ with Changing System Using Biofilm Process (생물막 담체를 이용한 실험실 규모 $A_{2}O$공법의 시스템 변형에 따른 고도처리 성능 평가에 관한 연구)

  • Kim, Min-Sik;Kang, Gu-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.209-218
    • /
    • 2012
  • Recently, as reinforced water quality standards for wastewater has been announced, more efficient and more powerful wastewater treatment processes are required rather than the existing activated sludge process. In order to meet this demands, we evaluate Task 1-4 about lab scale $A_{2}O$ process using biofilm media. Task 1, 2, and 3 use 'Module A' which has 4 partitions (Anoxic/Anerobic/Oxic/Oxic). Task 4 uses 'Module B' which has 2 partitions including a denitrification reactor with an Inclined plug flow reactor (IPFR) and a nitrification reactor with biofilm media. The denitrification reactor of Module B is designed to be upward flow using IPFR. The result of evaluating at each Task has shown that attached growth system has better capacity of removal efficiency for organic matter and nitrogen with the exception of phosphorus. Task 4 which has the most outstanding removal efficiency has 90.5% of $BOD_{5}$ removal efficiency, 97.8% of ${NH_4}^{+}-N$ removal efficiency, 65% of T-N removal efficiency and 92% of T-P removal efficiency with additional chemical phosphorus removal system operated at HRT 9hr, Qi:Qir 1:2, and BOD/T-N ratio 2.7.

The Improvement of Junction Box Within Photovoltaic Power System

  • Sun, Ki-Ju;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.359-362
    • /
    • 2016
  • In the PV (Photovoltaic) power system, a junction box collects the DC voltage generated from the PV module and transfers it to the PCS (power conditioning system). The junction box prevents damage caused by the voltage difference between the serially connected PV modules and provides convenience while repairing or inspecting the PV array. In addition, the junction box uses the diode to protect modules from the inverse current when the PV power system and electric power system are connected for use. However, by using the reverse blocking diode, heat is generated within the junction box while generating electric power, which decreases the generating efficiency, and causes short circuit and electric leakage. In this research, based on the purpose of improving the performance of the PV module by decreasing the heat generation within the junction box, a junction box with a built-in bypass circuit was designed/manufactured so that a certain capacity of current generated from the PV module does not run through the reverse blocking diode. The manufactured junction box was used to compare the electric power and heating power generated when the circuit was in the bypass/non-bypass modes. It was confirmed that the electric power loss and heat generation indicated a decrease when the circuit was in the bypass mode.

Design of High-resolution Wide-angle Lenz Module, and Image Distortion Compensation for Smart NUX (스마트 NUX용 고해상도 광각렌즈모듈 및 영상왜곡보정 설계)

  • Lee, Jae-Gon;Kang, Min-Goo;Kim, Won-Kyu;Lee, Kyung-Taek
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.999-1004
    • /
    • 2012
  • In this paper, camera modules and lens's images were analyzed for the compensation of distortion image by wide angle lens based WDR(Wide Dynamic Range) with high resolution sensor(2-Mega CMOS Image sensor). Due to wide angle ($176^{\circ}$) of designed wide angle camera modules, the compensation result of distorted image was analyzed, and the application of these modules was proposed for smart NUX(Natural User eXprience).

The Warpage Phenomena of Electrolyte Layer During the Sintering Process in the Layered Planar SOFC Module (적층 평판형 SOFC 모듈에서 소결 시 전해질 층의 휨 현상)

  • Oh, Min-Wook;Gu, Sin-Il;Shin, Hyo-Soon;Yeo, Dong-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.241-246
    • /
    • 2012
  • A layered planer SOFC module was designed from planar-type SOFC. It was prepared by multi-layered ceramic technology. To form the cathode and the anode in the layered structure, reliable channels should be made on the both side of electrolyte perpendicularly. However, monolithic SOFC using multi-layered ceramic technology hasn't been studied another group, and the warpage of electrolyte in the channel, also, hasn't been studied, when electrode is printed on the electrolyte. In this study, the channels are prepared with electrode printing, and their warpage are evaluated. In the case of YSZ without electrode, the warpages are nothing in the limit of measurement using optical microscope. The warpage of 'YSZ-NiO printed' increases than that of 'NiO printed', and also, the case of 'double electrode printed' is similar to 'YSZ-NiO printed'. It is thought that, in the printed electrolyte, the warpage is related to the difference of the sintering behavior of each material.

Development of A Validation System For Automatic Radiopharmaceutical Synthesis Process Using Network Modeling (방사성의약품 합성 프로세스 검증을 위한 네트워크 모델링)

  • Lee, Cheol-Soo;Heo, Eun-Young;Kim, Jong-Min;Kim, Dong-Soo
    • IE interfaces
    • /
    • v.24 no.3
    • /
    • pp.187-195
    • /
    • 2011
  • The automatic radiopharmaceutical module consists of several 2-way valves, couple of syringes, gas supply unit, heating(cooling) unit and sensors to control the chemical reagents as well as to help the chemical reaction. In order to control the actuators of radiopharmaceutical module, the process is tabulated using spread sheet as like excel. Unlike the common program, a trivial error is too critical to allowed in the process because the error can lead to leak the radioactive reagent and to cause the synthesis equipment failure during synthesizing. Hence, the synthesis process has been validated using graphic simulation while the operator checks the whole process visually and undergoes trial and error. The verification of the synthesis process takes a long time and has a difficulty in finding the error. This study presents a methodology to verify the process algebraically while the radiopharmaceutical module is converted to the network model. The proposed method is validated using actual synthesis process.