DOI QR코드

DOI QR Code

The Warpage Phenomena of Electrolyte Layer During the Sintering Process in the Layered Planar SOFC Module

적층 평판형 SOFC 모듈에서 소결 시 전해질 층의 휨 현상

  • 오민욱 (한국세라믹기술원 미래융합세라믹본부) ;
  • 구신일 (한국세라믹기술원 미래융합세라믹본부) ;
  • 신효순 (한국세라믹기술원 미래융합세라믹본부) ;
  • 여동훈 (한국세라믹기술원 미래융합세라믹본부)
  • Received : 2012.01.18
  • Accepted : 2012.02.24
  • Published : 2012.03.01

Abstract

A layered planer SOFC module was designed from planar-type SOFC. It was prepared by multi-layered ceramic technology. To form the cathode and the anode in the layered structure, reliable channels should be made on the both side of electrolyte perpendicularly. However, monolithic SOFC using multi-layered ceramic technology hasn't been studied another group, and the warpage of electrolyte in the channel, also, hasn't been studied, when electrode is printed on the electrolyte. In this study, the channels are prepared with electrode printing, and their warpage are evaluated. In the case of YSZ without electrode, the warpages are nothing in the limit of measurement using optical microscope. The warpage of 'YSZ-NiO printed' increases than that of 'NiO printed', and also, the case of 'double electrode printed' is similar to 'YSZ-NiO printed'. It is thought that, in the printed electrolyte, the warpage is related to the difference of the sintering behavior of each material.

Keywords

References

  1. S. M. Haile, Acta Mater., 51, 5981 (2003). https://doi.org/10.1016/j.actamat.2003.08.004
  2. Q. A. Huang, R. Hui, B. Wang, and J. Zhang, Electrochim. Acta., 52, 8144 (2007). https://doi.org/10.1016/j.electacta.2007.05.071
  3. N. Q. Minh, J. Am. Ceram. Soc., 76, 563 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  4. H. Moon, S. D. Kim, S. H. Hyun, and H. S. Kim, Int. J. Hydrogen Energy, 33, 1758 (2008). https://doi.org/10.1016/j.ijhydene.2007.12.062
  5. N. M. Sammes, Y. Du, and R. Bove, J. Power Sources, 145, 428 (2005). https://doi.org/10.1016/j.jpowsour.2005.01.079
  6. E G & G Technical Services, Inc., Fuel Cell Handbook, 6th ed., (U. S. Department of Energy, West Virginia, 2002) p. 215.
  7. N. M. Sammes, R. Bove, and Y. Du, J. Mater. Eng. Perform., 15, 463 (2006). https://doi.org/10.1361/105994906X117314
  8. R. N. Singh, J. Mater. Eng. Perform., 15, 463 (2006). https://doi.org/10.1361/105994906X117314
  9. Development of a High-efficiency Micro Fuel Cell Module, http://www.aist.go.jp (2009).
  10. H. S. Shin, D. H. Yeo, Y. W. Hong, J. H. Kim, and S. O. Yoon, Korea Patent, 10-2011-0026944 (2011).
  11. Q. Chang, X. Wang, J. E. Zhou, Y. Wang, and G. Meng, Adv. Mater. Res., 156, 262 (2011). https://doi.org/10.4028/www.scientific.net/AMR.156-157.262