• Title/Summary/Keyword: MIMO precoding

Search Result 120, Processing Time 0.018 seconds

Precoding Method for Increasing System Capacity in Multiuser MIMO Downlink Channels (다중사용자 MIMO 하향링크 채널 환경에서 시스템 용량 향상을 위한 프리코딩 기법)

  • Kim, Kwang-Yoon;Lee, Jong-Sik;Koo, Sung-Wan;Yang, Jea-Su;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.12-16
    • /
    • 2008
  • In this paper, we study precoding techniques for co-channel interference suppression in multiuser MIMO systems. DPC is optimal techniques to achieve the system capacity of multiuser MIMO downlink channels. DPC is not proper in practical wireless systems because complexity is very high. So block diagonal precoding for multiuser MIMO downlink channel is studied. The block diagonal precoding is used to suppress co-channel interference between multiuser. Block diagonal precoding method, whose complexity is reduced by modified null space operation, change multiuser MIMO channel to multiple single-user MIMO channel. We also use V-BLAST decoder in receiver. V-BLAST decoder can achieve increased system capacity in proportion to the number of users. We show improved system performance by using computer simulation.

  • PDF

A Study on LMMSE Receiver for Single Stream HSDPA MIMO Systems using Precoding Weights (Single Stream HSDPA MIMO 시스템에서 Precoding Weight 적용에 따른 LMMSE 수신기 성능 고찰)

  • Joo, Jung Suk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.3-8
    • /
    • 2013
  • In CDMA-based systems, recently, researches on chip-level equalization have been studied in order to improve receiving performance when supporting high-rate data services. In this paper, we consider a chip-level LMMSE (linear minimum mean-squared error) receiver for D-TxAA (dual stream transmit antenna array) based single stream HSDPA MIMO systems using precoding weights. First, we will derive precoding weights for maximizing the total instantaneous received power. We will also analyze the effects of both transmit delay of precoding weights and mobile velocity on chip-level LMMSE receivers, which is verified through computer simulations in various mobile channel environments.

$S^{2}MMSE$ Precoding for Multiuser MIMO Broadcast Channels (다중 사용자 MIMO 방송 채널을 위한 $S^{2}MMSE$ 프리코딩)

  • Lee, Min;Oh, Seong-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1185-1190
    • /
    • 2008
  • In this paper, we propose an simplified successive minimum mean square error ($S^{2}MMSE$) algorithm that can simplify the computational complexity for precoding matrix generation in the successive minimum mean square error (SMMSE) precoding method, which is adopted as a multiuser multiple-input multiple-output (MU-MIMO) precoding technique in the IST (information society technologies)-WINNER (wireless world initiative new radio) project. The original algorithm generates the precoding matrix by calculating all individual precoding vectors with each requiring its own MMSE nulling matrix, over all receive antennas for all users. In contrast, this proposed algorithm first calculates the MMSE nulling matrix for each user, and then calculates all precoding vectors for respective receive antennas of the corresponding user by using the identical MMSE nulling matrix, in which only a simple matrix-vector multiplication is required for each vector. Consequently, it can simplify significantly the computational complexity to generate a precoding matrix for SMMSE precoding.

Before/After Precoding Massive MIMO Systems for Cloud Radio Access Networks

  • Park, Sangkyu;Chae, Chan-Byoung;Bahk, Saewoong
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.398-406
    • /
    • 2013
  • In this paper, we investigate two types of in-phase and quadrature-phase (IQ) data transfer methods for cloud multiple-input multiple-output (MIMO) network operation. They are termed "after-precoding" and "before-precoding". We formulate a cloud massive MIMO operation problem that aims at selecting the best IQ data transfer method and transmission strategy (beamforming technique, the number of concurrently receiving users, the number of used antennas for transmission) to maximize the ergodic sum-rate under a limited capacity of the digital unit-radio unit link. Based on our proposed solution, the optimal numbers of users and antennas are simultaneously chosen. Numerical results confirm that the sum-rate gain is greater when adaptive "after/before-precoding" method is available than when only conventional "after-precoding" IQ-data transfer is available.

Noncooperative Multimode Precoding with Limited Feedback in MIMO Interference Channels

  • Lee, Jong-Ho
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.763-766
    • /
    • 2012
  • This letter proposes an iterative multimode precoding scheme with limited feedback for nonreciprocal MIMO interference channels. Based on analysis of game theory, we model the iterative multimode precoding as a noncooperative game with a finite set of strategies. Numerical results are presented to verify the sum rate performance of the proposed scheme.

Opportunistic Precoding based on Adaptive Perturbation for MIMO Systems (다중입출력 시스템에서 적응형 섭동을 이용한 기회적 프리코딩)

  • Nam, Tae-Hwan;An, Sun-hoe;Lee, Kyungchun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1638-1643
    • /
    • 2019
  • In this paper, we propose an adaptive-perturbation-aided opportunistic precoding (APOP) scheme for multiple-input multiple-output (MIMO) systems. To update a precoding matrix in MIMO systems, the proposed algorithm produces a random perturbation in each time slot. Then the additional adaptive perturbation is also applied, which depends on the reports of achievable data-rates from users. If the prior random perturbation increased the data rate, the adaptive perturbation is set to be the same as the prior random perturbation, otherwise the negative value of the prior random perturbation is applied for adaptive perturbation. Furthermore, to enhance the achievable data rates, the information on the stored precoding matrices in the memory as well as the currently generated precoding matrix is used for scheduling. Simulation results show that compared to conventional opportunistic precoding schemes, higher data rates are achieved by the proposed APOP scheme, especially when there are a relatively small number of users.

Multiuser Precoding and Power Allocation with Sum Rate Matching for Full-duplex MIMO Relay (전이중 MIMO 릴레이를 위한 다중 사용자 Precoding 및 Sum Rate 정합 기반 전력 할당 기법)

  • Lee, Jong-Ho;Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.1020-1028
    • /
    • 2010
  • Relay has attracted great attention due to its inherent capability to extend the service coverage and combat shadowing in next generation mobile communication systems. So far, most relay technologies have been developed under the half-duplex (HD) constraint that prevents relays from transmitting and receiving at the same time. Although half-duplex relay (HDR) is easy to implement, it requires partitioning of resource for transmission and reception, reducing the whole system capacity. In this paper, we propose a multinser precoding and power control scheme with sum rate matching for a full-duplex (FD) multiple-input multiple-output (MIMO) relay. Full-duplex relay (FDR) can overcome the drawback of HDR by transmitting and receiving on the same frequency at the same time, while it is crucial to reduce the effect of self-interference that is caused by its own transmitter to its own receiver. The proposed precoding scheme cancels the self-interference of the FDR as well as to support multiuser MIMO. Moreover, we suggest a power allocation scheme for FD MIMO relay with the constraint that the sum rate of the relay's received data streams is equal to that of the relay's transmit data streams.

Subspace Method Based Precoding for MIMO Spatial Multiplexing (공간 다중화를 위한 부 공간 방식 Precoding 기법)

  • Mun Cheol;Jung Chang-Kyoo;Park DongHee;Kwak Yoonsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1161-1166
    • /
    • 2005
  • In this paper, for spatial multiplexing with limited feedback, we propose subspace based precoding in which the active bases are selected at the receiver from a finite number of basis sets known at both receiving and transmitting ends, conveyed to the transmitter using limited feedback, and assembled into a preceding matrix at the transmitter. The selected bases are conveyed to the transmitter using feedback information on both the index of a basis set, which indicates the most appropriate set of coordinates for describing a MIMO channel, and the active bases having the significant amounts of energy in the selected basis set. We show that the proposed subspace based precoding provides capacity similar to that of the closed-loop MIMO even with limited feedback.

Energy-efficient mmWave cell-free massive MIMO downlink transmission with low-resolution DACs and phase shifters

  • Seung-Eun Hong;Jee-Hyeon Na
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.885-902
    • /
    • 2022
  • The mmWave cell-free massive MIMO (CFmMIMO), combining the advantages of wide bandwidth in the mmWave frequency band and the high- and uniform-spectral efficiency of CFmMIMO, has recently emerged as one of the enabling technologies for 6G. In this paper, we propose a novel framework for energy-efficient mmWave CFmMIMO systems that uses low-resolution digital-analog converters (DACs) and phase shifters (PSs) to introduce lowcomplexity hybrid precoding. Additionally, we propose a heuristic pilot allocation scheme that makes the best effort to slash some interference from copilot users. The simulation results show that the proposed hybrid precoding and pilot allocation scheme outperforms the existing schemes. Furthermore, we reveal the relationship between the energy and spectral efficiencies for the proposed mmWave CFmMIMO system by modeling the whole network power consumption and observe that the introduction of low-resolution DACs and PSs is effective in increasing the energy efficiency by compromising the spectral efficiency and the network power consumption.

Minimum Distance based Precoder Design for General MIMO Systems using Gram Matrix

  • Chen, Zhiyong;Xu, Xiaodong
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.634-646
    • /
    • 2015
  • Assuming perfect channel state information (CSI) at the transmitter and receiver, the optimization problem of maximizing the minimum Euclidean distance between two received signals by a linear precoder is considered for multiple-input multiple-output (MIMO) systems with arbitrary dimensions and arbitraryary quadrature amplitude modulation (QAM) input. A general precoding framework is first presented based on the Gram matrix, which is shown for 2-dimensional (2-D) and 3-dimensional (3-D) MIMO systems when employing the ellipse expanding method (EEM). An extended precoder for high-dimensional MIMO system is proposed following the precoding framework, where the Gram matrix for high-dimensional precoding matrix can be generated through those chosen from 2-D and 3-D results in association with a permutation matrix. A complexity-reduced maximum likelihood detector is also obtained according to the special structure of the proposed precoder. The analytical and numerical results indicate that the proposed precoder outperforms the other precoding schemes in terms of both minimum distance and bit error rate (BER).