공간 다중화를 위한 부 공간 방식 Precoding 기법

문철* · 정창규* · 박동희* · 곽윤식**

Subspace Method Based Precoding for MIMO Spatial Multiplexing

Cheol Mun* · Chang-Kyoo Jung* · DongHee Park* · YoonSik Kwak**

이 논문은 2004년도 유비쿼터스바이오정보기술연구센터의 지원에 의하여 연구되었음

요 약

본 논문에서는 제한된 피드백 정보를 사용하는 공간 다중화 기법에 사용될 수 있는 부 공간 방식 기반 precoding 기법을 제안한다. 제안된 precoding 기법은 수신기에서 다수의 공통 기저 집합(common basis sets) 으로부터 용량을 최대로 하는 기저들을 선택하고, 선택된 기저들은 feedback 정보를 통해 송신기에 전달되고, 송신기에서는 선택된 기저들로 이루어진 precoding 행렬을 구성한다. 선택된 기저들은 해당 기저들이 속한 기저 집합의 index에 대한 feedback 정보와 선택된 기저 집합에서 각 기저들의 선택 여부에 대한 feedback 정보를 통해 송신기로 feedback된다. 선택된 기저 집합 index는 송수신기가 약속한 공통 기저 집합 중에서 해당 MIMO 채널의 부 공간의 좌표(coordinate)에 가장 적합한 좌표를 나타내고, 해당 좌표에서 상당한 양의 에너지를 포함하는 기저들을 선택함으로써 적은 feedback 정보량으로 MIMO 채널을 묘사한다. 시뮬레이션을 통해 제안된 부 공간 방식 기반 precoding 기법이 적은 feedback 정보량을 사용하면서 폐루프 MIMO 용량 (closed-loop MIMO capacity)에 근접하는 용량을 제공함을 보인다.

ABSTRACT

In this paper, for spatial multiplexing with limited feedback, we propose subspace based precoding in which the active bases are selected at the receiver from a finite number of basis sets known at both receiving and transmitting ends, conveyed to the transmitter using limited feedback, and assembled into a precoding matrix at the transmitter. The selected bases are conveyed to the transmitter using feedback information on both the index of a basis set, which indicates the most appropriate set of coordinates for describing a MIMO channel, and the active bases having the significant amounts of energy in the selected basis set. We show that the proposed subspace based precoding provides capacity similar to that of the closed-loop MIMO even with limited feedback.

키워드

MIMO, precoding, subspace method, limited feedback, spatial multiplexing

^{*} 충주대학교정보통신공학과 교수

I. Introduction

Recently, there has been increasing interest in precoding as a method to improve the capacity of spatial multiplexing. Due to practical limitations on the uplink feedback load, current research has focused on precoding schemes that do not require transmit channel knowledge [1]-[3]. The precoder is selected at the receiver and conveyed to the transmitter using a limited number of bits. The limited feedback represents an index within afinite set of precoding matrices. The receiver selects one of these codebook matrices using a precoder selection criterion. Precoder selection at the receiver can limit the amount of feedback, since there is typically a small number of precoding matrices.

In this paper, we propose a subspace based precoding scheme with limited feedback, which provides a capacity level close to that of full transmit channel state information (CSI). The active bases used for transmission are selected from the finite number of basis sets known at both receiving and transmitting ends, each of which consists of n_T orthonormal bases and represents a set of coordinates. The selected bases are conveyed to the transmitter using using feedback information both on the index of a basis set, indicating the most appropriate set of coordinates for describing a MIMO channel, and on the active bases having the significant amounts of energy in the selected basis set. The selected bases are then assembled into a precoding matrix at the transmitter. A precoder codebook design methods [1]-[3] considerably reduce required feedback bits while providing a MIMO capacity close to that of full CSI. However, these methods still require a number of dedicated feedback bits for precoding. Furthermore, codebook approaches will face further increases of required feedback bits to vary the number of substreams for multi-mode precoding [1] and will require the transmitter spatial correlation matrix adjust the precoder codebook for a spatially uncorrelated Rayleigh MIMO channel, designed using the Grassmannian subspace packing in [1], to a current spatial correlation condition [2]. On the other hand, the

proposed subspace based precoding scheme allows one to adjust a precoding matrix based on limited feedback information on the active bases approximating the subspace of a MIMO channel. According to channel correlation conditions, the number of substreams and a precoding matrix can be adjusted without additional channel knowledge or feedback, which leads to a capacity close to that of the closed-loop MIMO, even with limited feedback.

II. System Model

We consider a spatial multiplexing system, with n_T transmitting and n_R receiving antennas. A precoding matrix consists of the active bases selected from a basis set among the N basis sets. Let us define an active basis subset A_n in which K_A bases are selected from a basis set E_n among $\{E_n\}_{n=1,\dots,N}$. The basis sets $\{E_n\}_{n=1,\dots,N}$ are designed offline and are known at both the transmitter and receiver. The high-speed data stream is demultiplexed into several $K_{A_{r}}$ independent substreams. The number of simultaneous substreams is adjusted up to $\min(n_T, n_R)$, according to the fading environments. The total transmit power P_T is uniformly distributed over K_A independent substreams. The symbols are precoded corresponding active bases and are sent from transmitting antennas.

We further assume that the channel is flat fading and quasi-static. The signal at the receiver end is given by

$$\mathbf{y} = \sqrt{\frac{P_T}{K_{A_{ir}}}} \mathbf{H} \mathbf{E}_{A_{ir}} \mathbf{x} + \mathbf{n}$$
 (1)

where y is an $n_R \times 1$ received signal vector and \mathbf{n} is an $n_R \times 1$ additive white complex Gaussian noise vector with variance σ^2 . The transmitted signal is a $K_A \times 1$

vector denoted by \mathbf{x} in which the ith element represents the symbol precoded by the ith basis in ${}^{A}_{n}$, ${}^{\mathbf{e}}_{A,\cdot}$, and multiplied by $\sqrt{\frac{P_{i}}{K_{A,\cdot}}}$. A precoding matrix $\mathbf{E}_{A,\cdot}$ is given by

$$\mathbf{E}_{A_{n}} = \left[\mathbf{e}_{A_{n,1}} \ \mathbf{e}_{A_{n,2}} \ \mathbf{L} \ \mathbf{e}_{A_{n},K_{A_{n}}} \right]$$
 (2)

where the precoding matrix \mathbf{E}_{A} consists of the selected bases in A_n . The precoding matrix is chosen at the receiver and is sent back by using the feedback information on both the index n^* of the selected basis set and the active basis subset A_n , which can be implemented using $\lceil \log_2 N \rceil + n_T$ bits on a feedback channel. Here, $\lceil x \rceil$ is the largest integer that is smaller than or equal to x.

The basis sets $\{E_n\}_{n=1,\cdots,N}$, which are designed offline and stored by both the transmitter andreceiver, are used for all pairs of combinations between transmitter and receivers with various channel eigenstructures. Thus, we design N basis sets, which define N subspaces with large minimum distances. Finding subspaces with large minimum distances is known as the Grassmannian subspace packing problem [1]. In this study, we design N basis sets using the systematic noncoherent constellation design in [4]. The n_T orthonormal bases belonging to the initial basis set E_1 , $\{\mathbf{e}_{1,i}\}_{i=1,\cdots,n_T}$ are given by

$$\mathbf{e}_{1,i} = \frac{1}{\sqrt{n_T}} \begin{bmatrix} 1 & e^{j\frac{2\pi}{n_T}(i-1)} & L & e^{j(n_T-1)\frac{2\pi}{n_T}(i-1)} \end{bmatrix}^T$$
(3)

N different $^{n}_{T}$ -dimensional subspaces with large minimum distances are constructed by rotating the subspace defined by the initial basis set $^{E_{1}}$ by $^{\theta_{n}} = \frac{2\pi}{n_{T}} \frac{n-1}{N}$

through n_T -dimensional complex space [4]. The n_T orthonormal bases belonging to E_n , $\{{\bf e}_{n,i}\}_{i=1,\cdots,n_T}$ are given by

$$\mathbf{e}_{n,i} = \Phi_n \mathbf{e}_{1,i} \tag{4}$$

where

$$\Phi_n = \operatorname{diag}\left\{1, e^{i\theta_n}, e^{j2\theta_n}, L, e^{i(\eta_T - 1)\theta_n}\right\}$$
(5)

The resultant $N \times n_T$ total bases are both maximally spaced and equiangular in n_T -dimensional complex space.

III. Subspace based Precoder Optimization

The criterion used for joint optimization of a basis set n^* and an active basis subset A_n is expressed as

$$n^*, A_n = \arg \max_{a' \text{ for all } ne(1,1,...,n)} C_{A'_n}$$
 (6)

where $\{A_n^j\}_{j=1,\cdots,2^{n-1}}$ denotes a possible basis subset obtained by selecting $K_{\mathcal{A}_n^j}$ bases among n_T bases in E_n and $C_{\mathcal{A}_n^j}$ denotes the capacity supported by the active bases in A_n^j . A closed-form solution for the criterion (6) cannot be found analytically, requiring a full search of all possible subsets of all basis sets $\{E_n\}_{n=1,\cdots,N}$. The total number of all possible subsets is $N(2^{n_T}-1)$.

The capacity supported by the active transmit bases in A_n is given by

$$C_{A_{n'}} = \log_2 \det \left(\mathbf{I}_{n_R} + \frac{\rho}{K_{A_{n'}}} \stackrel{\mathbf{G}}{\mathbf{H}}_{A_{n'}} \stackrel{\mathbf{H}}{\mathbf{H}}_{A_{n'}}^{H} \right)$$
$$= \sum_{i=1}^{K_{A_{n'}}} \log_2 \left(1 + \frac{\rho}{K_{A_{n'}}} \stackrel{\mathbf{G}}{\lambda}_{A_{n'}} \stackrel{\mathbf{G}}{\lambda}_{A_{n'}} \right)$$
(7)

where I_{n_R} is the $n_R \times n_R$ identity matrix and ρ denotes the average signal-to-noise ratio (SNR) per receiving antenna. An unitary transformed channel matrix of H by the precoding matrix \mathbf{E}_A , is denoted by $\mathbf{H}_A = \mathbf{H} \mathbf{E}_{A_a}$, and the eigenvalues of $\mathbf{H}_A = \mathbf{H} \mathbf{E}_{A_a}$, are denoted by $\{\hat{\lambda}_A, A\}_{i=1,1,\ldots,K_A}$.

At a low SNR, which requires basis selection for the efficient use of scare available power, the capacity can be expressed by Taylor series approximations, as follows:

$$C_{A_{\sigma}} \approx \frac{\rho}{K_{A_{\sigma}}} \sum_{i=1}^{K_{A_{\sigma}}} \sum_{i=1}^{2} \sum_{j=1}^{N_{A_{\sigma}, j}}$$

$$\approx \frac{\rho}{K_{A_{\sigma}}} \operatorname{tr} \left[\mathbf{E}_{A_{\sigma}}^{H} \mathbf{H}^{H} \mathbf{H} \mathbf{E}_{A_{\sigma}} \right]$$

$$\approx \frac{\rho}{K_{A_{\sigma}}} \sum_{i=1}^{K_{A_{\sigma}}} \mathbf{g}_{A_{\sigma}, i}$$

$$\approx \frac{\rho}{K_{A_{\sigma}}} \sum_{i=1}^{K_{A_{\sigma}}} \min_{i \in I_{\sigma}, n_{\sigma}} \hat{\lambda}_{i} |\mathbf{v}_{i}|^{H} \mathbf{e}_{A_{\sigma}, n}|^{2}$$

$$(8)$$

where $g_{A_{\bullet},i} = \mathbf{e}_{A_{\bullet},i}^{H} \mathbf{H} \mathbf{e}_{A_{\bullet},i}$ and λ_{i} is the eigenvalue of $\mathbf{H}^{H}\mathbf{H}$ associated with the eigenvector \mathbf{v}_{i} . We assume that $\lambda_{1} \geq \lambda_{2} \geq L \geq \lambda_{\min(n_{1},n_{R})}$ and $\|\mathbf{v}_{i}^{H}\mathbf{e}_{A_{\bullet},i}\|^{2} \geq \|\mathbf{v}_{i}^{H}\mathbf{e}_{A_{\bullet},i}\|^{2}$ for $l \neq i$. Equation (8) shows that the approximated capacity is equal to the sum of the SNRs of the $K_{A_{\bullet}}$ substreams. Each SNR largely depends on the energy of the projection of \mathbf{H} in the direction of $\mathbf{e}_{A_{\bullet},i}$, $g_{A_{\bullet},i}$, which physically represents the gain resulting from transmit beamforming by the basis $\mathbf{e}_{A_{\bullet},i}$. Furthermore, the optimal active bases maximizing the capacity become $\{\mathbf{v}_{i}\}_{i=1,1,...K_{A}}$ associated with the K_{A} largest eigenvalues of $\mathbf{H}^{H}\mathbf{H}$, which is identical with the observations in [1]-[3], if CSI on \mathbf{H} is available at the transmitter. Here, K_{A} denotes the optimal number of active eigenvectors maximizing the capacity. If a set of coordinates defined by E_{n} is

sufficiently similar to that defined by the eigenvectors of a MIMO channel, then $K_A = K_A$.

Obviously, each set of coordinates defined by a basis set $\{E_n\}_{n=1,1,N}$, provides a different active basis subset, maximizing the capacity on each set of coordinates, $\{A_n\}_{n=1,L,N}$, which leads to a different capacity result. Therefore, the capacity achieved by subspace based precoding can be maximized by jointly (1) selecting the most similar set of coordinates defined by E_n with a "natural"set of coordinates defined by the eigenvectors of a MIMO channel and (2) selecting the active basis subset A_n , having the significant amounts of energy, using the given by constraint that the total energy is $\sum_{i=1}^{n_T} g_{A_{\bullet,i}} = \sum_{l=1}^{\min(n_T, n_R)} \lambda_l$ Particularly, fading environments, which can be modeled by a superposition of scattering clusters with limited angular spreads, those few bases that transmit beams focused in the direction of the scattering clusters convey the largest amounts of energy to the receiver. In such cases, the capacity can be maximized by concentrating most of the total power in some contributory bases, i.e., by selecting some contributory bases.

As a result, the channel matrix \mathbf{H} of dimension n_T is projected onto a $K_{A_{a'}}$ -dimensional subspace spanned by $\{\mathbf{e}_{A_{a'},i}\}_{i=1,1,\dots,K_{A_{a'}}}$, which results in reduction in the dimension of \mathbf{H} when $K_{A_{a'}} < n_T$. Such a reduction yields a capacity gain via efficient use of available power. For example, at a low SNR and in the case of $g_{A_{a'},i,1} > g_{A_{a'},i,2} > L > g_{A_{a'},i,n_T}$, transmit beamforming by $\mathbf{e}_{A_{a'},i,1}$ achieves the optimal capacity because $\rho g_{A_{a'},i,1} > \frac{\rho}{m} \sum_{i=1}^m g_{A_{a'},i,i}$ for all m>1 in (8).

IV. Simulation Results and Discussions

We consider spatial multiplexing with a uniform linear

antenna array at the transmitter and receiver with spacings of $d_T = 4\lambda$ and $d_R = 0.5\lambda$, respectively. For each channel realization, a spatially correlated MIMO channel is generated by $\mathbf{H} = \mathbf{R}_r^{\frac{1}{2}} \mathbf{H}_w \mathbf{R}_r^{\frac{1}{2}}$, where \mathbf{H}_w is an $n_R \times n_T$ matrix with uncorrelated complex Gaussian entries. \mathbf{R}_r and \mathbf{R}_t are the correlation matrices at the receiver end and the transmitter end, respectively, and are given by [5]. We assume a uniform angular spectrum at both the transmitter and receiver sides, with angular spreads of Δ_t and Δ_r , respectively. We assume that the receiving antennas are loosely correlated by letting $\Delta_r = 60^{\circ}$, while the correlation between transmitting antennas varies with the angular spread Δ_i . We assume two scenarios $\Delta_t = 5^\circ$ and $\Delta_t = 30^\circ$, which correspond to highly correlated channels and loosely correlated channels, respectively. For each channel realization, the angle of departure at the transmitter is uniformly generated over a range from -60° to 60°, while the angle of arrival at the receiver is fixed at 0°.

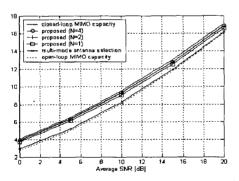


Fig.1. Capacity of subspace based precoding in highly correlated channels when $n_T = n_R = 4$

Figure 1 shows the average capacity of the proposed precoding as a function of the average SNR per receiving antenna ρ when $n_T = n_R = 4$ in highly correlated channels. For reference, the open-loop MIMO capacity and the closed-loop MIMO capacity are presented. The multi-mode antenna selection is also considered for

comparison; it selects an optimal active antenna subset maximizing the capacity, and uses n_T feedback bits [6]. The results show that the proposed precoding provides capacity close to that of the closed-loop MIMO when N=2 and N =4. A larger number of basis sets leads to a higher resolution in the space domain, which increases similarity of a set of coordinates defined by E_{n} to that defined by the channel eigenvectors. However, the proposed precoding shows further no improvement when $N \ge 2$. The proposed precoding scheme using two basis sets is an efficient choice for achieving the capacity with least feedback bits. Even in the case of N=1, which requires no feedback for the basis set index, the proposed precoding shows a considerable capacity enhancement over multi-mode antenna selection even using the same four feedback bits. The capacity gain of the proposed precoding over multi-mode antenna selection is attributed to the coordinate transformation by basis set selection, which finds a set of coordinates for the most effective reduction in dimension of a MIMO channel.

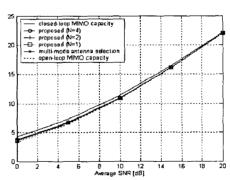


Fig.2. Capacity of subspace based precoding in loosely correlated channels when $n_T = n_R = 4$

When transmitting antennas are loosely correlated as shown in Fig. 2, the proposed precoding schemes, each with N basis sets, achieve the same capacity as multi-mode antenna selection and approach the capacity of closed-loop MIMO. With larger angular spreads at the transmitter side, the capacity enhancement of the

proposed precoding over multi-mode antenna selection decreases. As the transmitter spatial correlation decreases, a preference of a MIMO channel in the directions of some eigenvectors disappears because the eigenvalues of the MIMO channel become comparatively uniform. This decreases the additional gain of the proposed precoding over multi-mode antenna selection obtained by the coordinate transformation. As a conclusion, the proposed subspace based precoding can adjust both the number of substreams and the precoding matrix, according to channel conditions, and it provides the capacity close to that of the closed-loop MIMO, even with limited feedback.

References

- [1] D. J. Love and R. W. Heath Jr., "Multi-mode precoding using linear receivers for Limited Feedback MIMO Systems," in Proc. of ICC 2004, pp.448-452
- [2] D. J. Love and R. W. Heath Jr., "Grassmannian beamforming on correlated MIMO channels," in proc. of globecomm 2004, pp.106-110
- [3] W. Santipach and M. L. Honig, "Asymptotic performance of MIMO wireless channels with limited feedback," in proc. military commun. conf. (MILCOM), pp.141-146, Oct. 2003.
- [4] B. M. Hochwald, T. L. Marzetta, T. J. Richardson, W. Sweldens, and R. Urbanke, "Systematic design of unitary space-time constellations," IEEE Trans. Info. Th., vol.46, pp.1962-1973, Sept. 2000.
- [5] J. Salz, and J.H. Winters, "Effect of fading correlation on adaptive arrays in digital mobile radio," IEEE Trans. Veh. Technol., vol.43, no.4, pp.1049-1057, Nov. 1994.
- [6] D. J. Love and R. W. Heath, Jr., "Multi-mode antenna selection for spatial multiplexing with linear receivers," accepted to IEEE Trans. Signal Processing

저자약력

문 철(Cheol Mun)

1995년 2월: 연세대학교 전자 공학 과 졸업

1997년 2월: 연세대학교 전자 공학 과 공학석사

2001년 2월: 연세대학교 전자 공학 과 공학박사

2001년 3월~2002년 2월: 삼성전자 네트웍 사업부 2003년 8월 ~ 현재 : 충주대학교 전기전자정보 공학부 교수 ※관심분야 : 채널모델링, MIMO, OFDM

정창규(Chang-Kyoo Jung)

1988년 2월: 연세대학교 전자공 학과 졸업

1990년 8월: 연세대학교 전자공 학과 공학석사

1995년 8월: 연세대학교 전자공 학과 공학박사

1995년 9월 ~ 현재: 충주대학교 전기전자정보공학부 교수 ※관심분야 : 채널모델링, MIMO, OFDM

박동희(Park, DongHee)

1985년 2월: 청주대학교 공과대학 전자공학과(공학사)

1987년 2월: 중앙대학교 전자공 학과(공학석사)

1992년 8월: 중앙대학교 전자공 학과(공학박사)

1996년 12월 ~ 1998년 1월: Pennsylvania 주립대학교 전기공학과 Post Doc.

1992년 4월 ~ 현재: 충주대학교 전기전자및정보공학부 교수 ※관심분야 : 안테나, 전자파 응용

곽윤식(Kwak YoonSik)

충주대학교컴퓨터공학과 교수

※관심분야: 영상처리, 마이크로프로세서, 인터넷