• Title/Summary/Keyword: MIMO control

Search Result 277, Processing Time 0.022 seconds

Model Identification for Control System Design of a Commercial 12-inch Rapid Thermal Processor (상업용 12인치 급속가열장치의 제어계 설계를 위한 모델인식)

  • Yun, Woohyun;Ji, Sang Hyun;Na, Byung-Cheol;Won, Wangyun;Lee, Kwang Soon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.486-491
    • /
    • 2008
  • This paper describes a model identification method that has been applied to a commercial 12-inch RTP (rapid thermal processing) equipment with an ultimate aim to develop a high-performance advanced controller. Seven thermocouples are attached on the wafer surface and twelve tungsten-halogen lamp groups are used to heat up the wafer. To obtain a MIMO balanced state space model, multiple SIMO (single-input multiple-output) identification with highorder ARX models have been conducted and the resulting models have been combined, transformed and reduced to a MIMO balanced state space model through a balanced truncation technique. The identification experiments were designed to minimize the wafer warpage and an output linearization block has been proposed for compensation of the nonlinearity from the radiation-dominant heat transfer. As a result from the identification at around 600, 700, and $800^{\circ}C$, respectively, it was found that $y=T(K)^2$ and the state dimension of 80-100 are most desirable. With this choice the root-mean-square value of the one-step-ahead temperature prediction error was found to be in the range of 0.125-0.135 K.

1.8-GHz Six-Port-Based Impedance Modulator Using CMOS Technology (CMOS 공정을 이용한 1.8 GHz 6-포트 기반의 임피던스 변조기)

  • Kim, Jinhyun;Kim, Jeong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.383-388
    • /
    • 2018
  • This paper presents a 1.8 GHz six-port-based impedance modulator using CMOS technology, which can select an arbitrary load impedance with switch control. The proposed 1.8-GHz impedance modulator comprises a Wilkinson power divider, three quadrature hybrid couplers, and four SP3T switches for each load impedance selection. The measured insertion loss of -13 dB and the input/output return losses of >10 dB are achieved in the range of 1.4~2.2 GHz. The low drop output regulator for a stable 3.3 V DC power and the serial peripheral interface(SPI) for an easy digital control are integrated. The chip size, including the pads, is $1.7{\times}1.8mm^2$.

Vibration Reduction Simulation of UH-60A Helicopter Airframe Using Active Vibration Control System (능동 진동 제어 시스템을 이용한 UH-60A 헬리콥터 기체의 진동 감소 시뮬레이션)

  • Lee, Ye-Lin;Kim, Do-Young;Kim, Do-Hyung;Hong, Sung-Boo;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.443-453
    • /
    • 2020
  • This study using the active vibration control technique attempts to alleviate numerically the airframe vibration of a UH-60A helicopter. The AVCS(Active Vibration Control System) is applied to reduce the 4/rev vibration responses at the specified locations of the UH-60A airframe. The 4/rev hub vibratory loads of the UH-60A rotor is predicted using the nonlinear flexible dynamics analysis code, DYMORE II. Various tools such as NDARC, MSC.NASTRAN, and MATLAB Simulink are used for the AVCS simulation with five CRFGs and seven accelerometers. At a flight speed of 158knots, the predicted 4/rev hub vibratory loads of UH-60A rotor excite the airframe, and then the 4/rev vibration responses at the specified airframe positions such as the pilot seat, rotor-fuselage joint, mid-cabin, and aft-cabin are calculated without and with AVCS. The 4/rev vibration responses at all the locations and directions are reduced by from 25.14 to 96.05% when AVCS is used, as compared to the baseline results without AVCS.

Analyses of Larg Cell Area MCFC System Dynamics (대면적 용융탄산염 연료전지 시스템 동특성 분석)

  • 강병삼;고준호;이충곤;임희천
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.592-604
    • /
    • 1999
  • The steady state and dynamic characteristics of large cell area MCFC stacks were analyzed to solve the problems such as temperature difference generated in stacks and pressure difference between anode and cathode. Manipulated variables (current density, duel utilization rate, oxidant utilization rate) and controlled variables (temperature difference, anode and cathode pressure difference) which had an important effect on the MCFC stack performance were determined using operation results of two types of MCFC stacks (5kW (3,000 $\textrm{cm}^2$, 20 ea). 3kW (6,000 $\textrm{cm}^2$, 5ea)). The stability and transfer function representing system dynamics were obtained by steady state gain rate which showed the relative change between MVs and CVs. The transfer function was a 3$\times$3 matrix and a typical first order system without time delay. The optimal operating condition of large cell area MCFC stacks could be determined by analyzing dynamic characteristics. In case of a 5 kW MCFC stack, pressurized operation with recycle flow should be used to control the outlet temperature less than 68$0^{\circ}C$ and to control the MCFC system effectively. MIMO control or decoupler should be used to remove the interaction between MVs and CVs. This result will be used as important data in determining the control structure design and operation mode of large cell area MCFC systems in the future.

  • PDF

Analysis of Antenna Isolation Using Decoupling Structure (격리구조 기법을 이용한 안테나 격리도 변화 분석)

  • Lee, Junghun;Kim, Jihoon;Kim, Min-Gi;Kim, Hyung-Hoon;Kim, Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.12
    • /
    • pp.1044-1049
    • /
    • 2015
  • In this paper, isolation enhanced antenna using isolating resonator was proposed. Two loop type antennas were designed to operate at Wi-Fi band(2.4~2.5 GHz), in symmetry to the center, and are closely located to each other. In order to enhance isolation characteristics at Wi-Fi bands, isolating resonator was designed between the two loop type antennas. The proposed isolating resonator is a slot type antenna that enhances isolation with the control of the size, and by adjusting the value of capacitor($C_D$) the resonant frequency of the isolating resonator can easily be adjusted to enhance isolation characteristic at the target frequency.

Performance Comparison of Space-Time Block Coding in High-speed Railway Channel (고속 철도 채널 환경에서 시공간 블록 부호 성능 비교)

  • Park, Seong-Guen;Lee, Jong-Woo;Jeon, Taehyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.291-297
    • /
    • 2014
  • Due to the rapid increase in demand for transportation of human and freight in modern railway systems, the CBTC system has been proposed, which is the solution for improvement of the line capacity that has been limited by the conventional track circuit based train control system. In the CBTC system, higher reliability of the communication system should be guaranteed for the safety of passengers and trains. However, due to the inherent characteristics of the wireless channel environment, performance degradations are inevitable. The diversity techniques can increase the reliability of data transmission using multiple antennas. In this paper, we investigate the performance of the STBC in the railway channel environment. Rician fading model is used for the viaduct scenarios which take important roles in the railway system. Also, considered is the Doppler effect which is an important factor in the mobile communication system. Simulations are performed to analyze the performance of the STBC in various channel environments. Results show that the performance degradation due to the phase error in viaduct scenarios is independent of the diversity order but is affected by the constellation of the modulation.

The Study of Analysis Algorithm and Wave Characteristic Control Environment for Wireless Communication (무선이동통신 제어환경에서 전파특성 및 알고리즘 분석에 관한 연구)

  • Kang, Jeong-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.371-377
    • /
    • 2011
  • Users of the Information Age, IT usage patterns of the wired broadband information services and various forms of the same quality wireless multimedia services are required. Changes of these times the next-generation mobile communications (IMT-Advanced) has emerged as the necessity of developing its current voice and packet data communications on the move in the high-speed 100Mbps, 1Gbps in stationary and slow data transmission rates up to fixed-mobile convergence based on needed to provide ubiquitous service platform for the realization of IMT-Advanced is the time for preparation. In particular, 3-5GHz band, focused on mobile communications can be used to secure the necessary frequency band relocated and the existing crosstalk analysis methodology developed for the services rendered, and the frequency of such results to obtain new spectrum for IMT-Advanced for the country to secure the frequency characteristics and IMT-Advanced 3-5GHz band for the radio frequency of the characterization techniques necessary to develop a national wireless communication interference and frequency-based technology acquisition and management skills were identified.