• Title/Summary/Keyword: MIMO channel capacity

Search Result 173, Processing Time 0.025 seconds

MIMO Circular Polarization Feed Network for Communication Performance Improvement of Land Mobile Satellite System (육상 이동 위성 시스템의 통신 성능 향상을 위한 MIMO 원형 편파 급전 네트워크)

  • Han, Jung-Hoon;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.426-435
    • /
    • 2013
  • In this paper, we propose the MIMO circular polarization feed network to enhance the communication performances from the previous $2{\times}2$ MIMO channel to $4{\times}4$ channel for Land Mobile Satellite communication system. The only possibility to extend the communication channel is to use the additional satellite because of the limitation of satellite spaces to install additional antennas. For overcoming this problems, we propose the MIMO circular polarization feed network to secure the isolation characteristics without the distant antenna space. The port isolation characteristics and each port impedance matching conditions are numerically verified and we suggest the $4{\times}4$ MIMO channel model of the proposed system and the performances are verified. The fabricated circular polarization patch antennas with the proposed feed network are measured in the reverberation chamber and 7~10 dB of diversity gain and 80 % increasement of channel capacity are obtained.

A Neoteric Three-Dimensional Geometry-Based Stochastic Model for Massive MIMO Fading Channels in Subway Tunnels

  • Jiang, Yukang;Guo, Aihuang;Zou, Jinbai;Ai, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2893-2907
    • /
    • 2019
  • Wireless mobile communication systems in subway tunnels have been widely researched these years, due to increased demand for the communication applications. As a result, an accurate model is essential to effectively evaluate the communication system performance. Thus, a neoteric three-dimensional (3D) geometry-based stochastic model (GBSM) is proposed for the massive multiple-input multiple-output (MIMO) fading channels in tunnel environment. Furthermore, the statistical properties of the channel such as space-time correlation, amplitude and phase probability density are analyzed and compared with those of the traditional two-dimensional (2D) model by numerical simulations. Finally, the ergodic capacity is investigated based on the proposed model. Numerical results show that the proposed model can describe the channel in tunnels more practically.

Low Complexity Multiuser Scheduling in Time-Varying MIMO Broadcast Channels

  • Lee, Seung-Hwan;Lee, Jun-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.2
    • /
    • pp.71-75
    • /
    • 2011
  • The sum-rate maximization rule can find an optimal user set that maximizes the sum capacity in multiple input multiple output (MIMO) broadcast channels (BCs), but the search space for finding the optimal user set becomes prohibitively large as the number of users increases. The proposed algorithm selects a user set of the largest effective channel norms based on statistical channel state information (CSI) for reducing the computational complexity, and uses Tomlinson-Harashima precoding (THP) for minimizing the interference between selected users in time-varying MIMO BCs.

Novel User Selection Algorithm for MU-MIMO Downlink System with Block Diagonalization (Block Diagonalization을 사용하는 하향링크 시스템에서의 MU-MIMO 사용자 스케쥴링 기법)

  • Kim, Kyunghoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.3
    • /
    • pp.77-85
    • /
    • 2018
  • Multi-User Multiple-Input Multiple-Output (MU-MIMO) is the core technology for improving the channel capacity compared to Single-User MIMO (SU-MIMO) by using multiuser gain and spatial diversity. Key problem for the MU-MIMO is the user selection which is the grouping the users optimally. To solve this problem, we adopt Extreme Value Theory (EVT) at the beginning of the proposed algorithm, which defines a primary user set instead of a single user that has maximum channel power according to a predetermined threshold. Each user in the primary set is then paired with all of the users in the system to define user groups. By comparing these user groups, the group that produces a maximum sum rate can be determined. Through computer simulations, we have found that the proposed method outperforms the conventional technique yielding a sum rate that is 0.81 bps/Hz higher when the transmit signal to noise ratio (SNR) is 30 dB and the total number of users is 100.

Joint Interference Alignment and Power Allocation for K-User Multicell MIMO Channel Through Staggered Antenna Switching (엇갈린 안테나 스위칭을 통한 K- 사용자 다중 셀 MIMO 채널의 조인트 간섭 정렬 및 전력 할당)

  • Kim, Jeong-Su;Lee, Moon-Ho;Park, Daechul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.33-48
    • /
    • 2018
  • In this paper, we characterise the joint interference alignment and power allocation strategies for a K-user multicell multiple-input multiple-output (MIMO) Gaussian interference channel. We consider a MIMO interference channel with a blind interference alignment through staggered antenna switching on the receiver. We explore the power allocation and the feasibility condition for cooperative cell-edge (CE) mobile users (MUs) by assuming that the channel state information is unknown. The new insight behind the transmission strategy of the proposed scheme is premeditated (randomly generated transmission strategy) and partial cooperative CE MUs, where the transmitter is equipped with a conventional antenna, the receiver is equipped with a reconfigurable multimode antenna (staggered antenna switching pattern), and the receiver switches between preset T modes. Our proposed scheme assists and aligns the desired and interference signals to cancel the common interference signals, since the received signal must have a corresponding independent signal subspace. The sum capacity for a K-user multicell MIMO Gaussian interference channel with reconfigurable multimode antennas is completely characterised.

A Robust Adaptive MIMO-OFDM System Over Multipath Transmission Channels (다중경로 전송 채널 특성에 강건한 적응 MIMO-OFDM 시스템)

  • Kim, Hyun-Dong;Choe, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.762-769
    • /
    • 2007
  • Adaptive MIMO-OFDM (Orthogonal Frequency Division Multiplexing) system adaptively changes modulation scheme depending on feedback channel state information (CSI). The CSI feedback channel which is the reverse link channel has multiple symbol delays including propagation delay, processing delay, frame delay, etc. The unreliable CSI due to feedback delay degrades adaptive modulation system performance. This paper compares the MSE and data capacity with respect to delay and channel signal to noise ratio for the two multi-step channel prediction schemes, CTSBP and BTSBP, such that robust adaptive SISO-OFDM/MIMO-OFDM is designed over severe mobile multipath channel conditions. This paper presents an interpolation method to reduce feedback overhead for adaptive MIMO-OFDM and shows MSE with respect to interpolation interval.

Channel Sounding-based Channel Capacity Measurement of MIMO-OFDM (채널 사운딩 기반의 MIMO-OFDM 채널용량 측정)

  • Park, Bang-Hun;Cho, Ju-Phil;Kim, Seong Kwon;Cha, Jae Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.29-34
    • /
    • 2008
  • In this paper, we propose the channel sounding scheme which improves the reliability and performance of communication link and mitigate the fading effect of channel in MTMO-OFDM system having correlation between Tx and Rx antennas. And we estimate the channel propagation characteristics of channels between the transmitter and receiver with CS scheme by measuring the channel propagation characteristics using sounding signal. Multi agent system models can be used to analyze the path of the system within any time frame. Further, using this proposed method, we can increase the channel capacity by simple calculation in receiver and transmitter and allocate the optimal power by channel information in transmitter. Also, the increment of channel capacity using the prorposed method is induced as the number of antenna is increased. So, we can anticipate the performance improvement with the presented scheme in more complicated Tx and Rx antenna system.

  • PDF

Closed-form Capacity Analysis for MIMO Rayleigh Channels

  • Humayun Kabir, S. M.;Pham, Van-Su;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.49-52
    • /
    • 2008
  • In this letter, we derive a tight closed form formula for an ergodic rapacity of a multiple-input multiple-output (MIMO) for the application of wireless communications. The derived expression is a simple close-form formula to determine the ergodic capacity of MIMO systems. Assuming the channels are independent and identically distributed (i.i.d.) Rayleigh flat-fading between antenna pairs, the ergodic capacity can be expressed in a closed form as the finite sum of exponential integrals.

  • PDF

Downlink Performance of Distributed Antenna Systems in MIMO Composite Fading Channel

  • Xu, Weiye;Wang, Qingyun;Wang, Ying;Wu, Binbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3342-3360
    • /
    • 2014
  • In this paper, the capacity and BER performance of downlink distributed antenna systems (DAS) with transmit antenna selection and multiple receive antennas are investigated in MIMO composite channel, where path loss, Rayleigh fading and lognormal shadowing are all considered. Based on the performance analysis, using the probability density function (PDF) of the effective SNR and numerical integrations, tightly-approximate closed-form expressions of ergodic capacity and average BER of DAS are derived, respectively. These expressions have more accuracy than the existing expressions, and can match the simulation well. Besides, the outage capacity of DAS is also analyzed, and a tightly-approximate closed-form expression of outage capacity probability is derived. Moreover, a practical iterative algorithm based on Newton's method for finding the outage capacity is proposed. To avoid iterative calculation, another approximate closed-form outage capacity is also derived by utilizing the Gaussian distribution approximation. With these theoretical expressions, the downlink capacity and BER performance of DAS can be effectively evaluated. Simulation results show that the theoretical analysis is valid, and consistent with the corresponding simulation.

Superimposed Pilot Aided Multiuser Channel Estimation for MIMO-OFDM Uplinks

  • Yang, Qinghai;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.688-691
    • /
    • 2006
  • This letter addresses the superimposed pilot aided multiuser channel estimation for the uplinks of multi-input multi-output orthogonal frequency-division multiplexing systems. To mitigate the embedded-data effects on the performance of channel estimation, a novel combining algorithm is proposed. Optimal pilot symbols are developed with respect to the least square channel estimate's mean square error. The averaged sum-capacity lower bound is derived and simulated. Simulation results show that on a low signal-to-noise ratio regime, our proposed scheme achieves better performance and higher capacity than the conventional pilot aided approach.

  • PDF