• Title/Summary/Keyword: MIMO

Search Result 1,599, Processing Time 0.028 seconds

A Space Division Multiple Access Technique for Downlink MIMO Systems (하향링크 MIMO 시스템을 위한 공간분할 다중접속 기술)

  • Rim, Min-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9A
    • /
    • pp.1022-1030
    • /
    • 2004
  • The next generation cellular radio systems require high data rate transmission and large system capacity In order to meet these requirements, multiple antennas can be used at the base and mobile stations, forming MIMO(multiple-input, multiple-output) channels This paper considers a downlink MIMO system assuming a large number of base station antennas, a small number of mobile station antennas, and rich-scattering, quasi-stationary, and flat-fading channel environments When the channel state information is given at the base station in a single user system, a MIMO technique with SVD(singular value decomposition) and water-filling can achieve the maximal downlink channel capacity. In multi-user environments, however, SDMA(space division multiple acces) technique can be used to further increase the total channel capacity supported by the base station This paper proposes a MIMO SDMA technique which can transmit parallel data streams to each of multiple users. The proposed method. can achieve higher total channel capacity than SVD-based MIMO techniques or conventional SDMA using smart antennas.

Detection Performance of Noncoherent Radar: MIMO Radar, Phased Array Radar, Directional MIMO Radar (비동기식 레이더의 검출 성능 비교: MIMO 레이더, 위상 배열 레이더, 지향성 MIMO 레이더)

  • An, Chan-Ho;Yang, Jang-Hoon;Pak, Ui-Young;Ryu, Young-Jae;Han, Duk-Chan;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1752-1757
    • /
    • 2011
  • In a traditional phased array radar, closely spaced antenna elements transmit a scaled version of single waveform to maximize the signal energy. On the contrary, a multiple-input multiple-output (MIMO) radar consists of widely separated antennas and transmits an arbitrary waveform from each antenna element. These waveforms and spatial diversity enable superior capabilities compared with phased array radar. At high signal-to-noise ratio (SNR), the detection performance of the MIMO radar is better than the phased array radar due to the diversity gains. However, the phased array radar outperforms the MIMO radar at low SNR, due to the energy maximization. In this paper, we investigate the compromised scheme between the MIMO radar and the phased array radar. Employing the MIMO radar equipped with phased array elements, the compromised scheme achieves both array gain and diversity gain. Also, we compare the performance degradation when the steering direction is incorrect.

3-D Multiple-Input Multiple-Output Interferometric ISAR Imaging (3차원 Multiple-Input Multiple-Output 간섭계 ISAR 영상형성기법)

  • Kang, Byung-Soo;Bae, Ji-Hoon;Yang, Eun-Jung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.564-571
    • /
    • 2015
  • In this paper, we propose a multiple-input, multiple-output(MIMO) interferometric radar network system to generate three-dimensional (3-D) MIMO interferometric inverse synthetic aperture radar(InISAR) image. In the MIMO interferometric radar network system, the MIMO InISAR image can be formed by an incoherent summation of multiple bistatic InISAR images that show 3-D scatterers of a target observed at different bistatic interfermetric configurations, respectively. Because bistatic-sccattering physics of a target at different viewpoints are visible in the 3-D MIMO InISAR image, it can provide various scatterering physics properties of a target, and can be used for target classification as a useful feature vector. Simulations validate that our proposed method successfully finds locations of scatterers of a target in MIMO radar interferometric network system.

MIMO Antenna Design with Low Correlation for LTE Router (LTE 라우터용 저상관도 MIMO 안테나 설계)

  • Jo, Ha-Seok;Zhang, Rui;Kim, Ji-Hoon;Kim, Hyung-Hoon;Kim, Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.349-356
    • /
    • 2015
  • In this paper, MIMO antenna with low correlation for LTE band 5(824~894 MHz) was designed by adopting monopole antenna and slot antenna. Based on ground characteristic mode theory, MIMO antenna was designed using different types of antennas for enhancement of correlation. MIMO antenna using PIFA and slot type antennas is proposed and correlation coefficient was compared with MIMO antenna using two PIFAs. Average correlation coefficient of MIMO antenna using two PIFAs was 0.71 but the proposed MIMO antenna had very low correlation coefficient of 0.17.

Performance Analysis of MIMO System adopting MMSE-OSUC Receiver in Fading Channel (페이딩 채널에서 MMSE-OSUC 수신기를 적용한 MIMO 시스템의 성능 분석)

  • Park, Ki-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.723-729
    • /
    • 2011
  • In this paper, we simulate and evaluate the performance of MIMO systems adopting MMSE-OSUC receiver algorithm under Rayleigh fading channel environment. In the simulation, BPSK, QPSK, 16QAM, and 64QAM modulation is used with frame length of 100 symbols. First, the concept of MIMO is introduced by the analytical basis of the channel capacity of MIMO system. From the performance analysis results, the channel capacity is identified by the function of channel and it is affected by the channel characteristic. Next, based on this approach, the algorithm for performance evaluation over MIMO channel was analyzed. From the performance analysis results, it is found that MMSE-OSUC receiver algorithm generally outperform conventional ZF-OUSC receiver algorithm in performance but the performance difference between the two algorithms is reduced as modulation scheme with larger constellation point is used.

Human Hand Effect on The MIMO OTA Performance of LTE Mobile Handset (LTE 이동 단말의 MIMO 무선 성능과 Hand effect)

  • Cho, Y.S.;Kim, Y.R.;Noh, S.P.;Shim, H.J.;Kim, I.K.
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.5
    • /
    • pp.91-98
    • /
    • 2012
  • Since the major cellular data service providers in U.S, Japan as well as in Korea started the LTE (Long Term Evolution) service, there has been more strong need for the methods that can accurately measure the MIMO (Multi Input-Multi Output) OTA (Over The Air) performance of LTE handsets because the performance of the MIMO antenna determines the data throughput in the downlink. In this paper, the hand effect on the MIMO antenna performance is analyzed by numerically and experimentally. The hand effect on the LTE mobile handset is analyzed by measuring the link level performance in the MIMO OTA system.

Hybrid Symbol Offset Estimation Algorithm for MIMO OFDM Systems (MIMO OFDM 시스템을 위한 하이브리드 심볼 옵셋 추정 알고리즘)

  • Jung, Hyeok-Koo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.461-469
    • /
    • 2008
  • This paper proposes a hybrid symbol offset estimation algorithm for MIMO(Multiple Input Multiple Output) OFDM system. As MIMO OFDM systems are multiple transmitter and receiver antenna systems, apart from SISO(Single Input Single Output) system, it is possible to use several combining techniques which are used in multiple receive antenna system. In this paper, we propose hybrid symbol offset estimation algorithms using combining techniques in multiple receive antenna systems, simulate and show the performances in MIMO system environments. The proposed equal gain combining correlation algorithm has better performance 1.8 times in searching the ideal symbol offset rather than the conventional early symbol offset algorithm in severe ISI channel.

Adaptive Opimization of MIMO Codebook to Channel Conditions for Split Linear Array (분할된 선형배열안테나를 위한 채널 환경에 적응하는 MIMO 코드북 최적화)

  • Mun, Cheol;Jung, Chang-Kyoo;Kwak, Yun-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.736-741
    • /
    • 2009
  • In this paper, adaptive optimizations of precoder codebook to channel conditions is proposed for a multiuser multiple-input multiple-output (MIMO) system with split linear array and limited feedback. We propose adaptive method for constructing a precoder codebook by coloring the random vector quantization codebook at each link by using limited long-term feedback information on transmit correlation matrix of each link. It is shown that the proposed multiuser MIMO codebook design scheme outperforms existing multiuser MIMO codebook design schemes for various channel conditions in terms of the average sum throughput of multiuser MIMO systems using zero-forcing maximum eigenmode transmission and limited feedback.

  • PDF

Verification method for 4x4 MIMO algorithm implementation and results (4x4 MIMO 알고리즘 구현 및 결과에 대한 검증 방법)

  • Choi, Jun-su;Hur, Chang-wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1157-1162
    • /
    • 2015
  • This paper is the design and implementation to the 4x4 MIMO algorithm based on OFDM, and presented how to verify the implemented result. Algorithm applied the MRVD and QRM-MLD. Matlab and Simulink are used to design channel presumption & MIMO algorithm by Floating-point and Fixed-point model. After then implement VHDL using Modelsim. Performance of algorithm is checked by comparing Simulink model, Modelsim simulation, ISE ChipScope with the result measured by oscilloscope. This method is useful to verify an algorithm with uncompleted system. Conformance between the result of ChipScope and the result of oscilloscope is confirmed, it could be applied on the Backhaul system.

Progressive Edge-Growth Algorithm for Low-Density MIMO Codes

  • Jiang, Xueqin;Yang, Yi;Lee, Moon Ho;Zhu, Minda
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.639-644
    • /
    • 2014
  • In low-density parity-check (LDPC) coded multiple-input multiple-output (MIMO) communication systems, probabilistic information are exchanged between an LDPC decoder and a MIMO detector. TheMIMO detector has to calculate probabilistic values for each bit which can be very complex. In [1], the authors presented a class of linear block codes named low-density MIMO codes (LDMC) which can reduce the complexity of MIMO detector. However, this code only supports the outer-iterations between the MIMO detector and decoder, but does not support the inner-iterations inside the LDPC decoder. In this paper, a new approach to construct LDMC codes is introduced. The new LDMC codes can be encoded efficiently at the transmitter side and support both of the inner-iterations and outer-iterations at the receiver side. Furthermore they can achieve the design rates and perform very well over MIMO channels.