• Title/Summary/Keyword: MIL-STD

Search Result 260, Processing Time 0.03 seconds

전장품 접속을 위한 UART 시리얼 버스 구현에 대한 평가

  • Won, Ju-Ho;Jo, Yeong-Ho;Lee, Yun-Gi;Kim, Ui-Chan;Jo, Yeong-Jun;Lee, Sang-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.184.2-184.2
    • /
    • 2012
  • 위성의 전장품은 전기적 접속을 위해서 1:1 연결을 하는 Point-to-Point 버스 방식과 여러개의 Slave (Remote Terminal)을 갖고, 일반적으로 1개의 Master (Controller)에 의해서 연결하게 되는 버스 구조를 갖는 접속 채널을 통해서 연결이 된다. 가장 많이 사용되는 방식인 MIL-STD-1553B는 데이터 전송속도가 1Mbps이고, Transformer에 의해서 완전하게 버스와 각 전장품이 완전하게 절연이 되는 구조로, 전기적 고장이 전달되는 것을 방지할 수가 있지만, 설계의 난이도가 높다. 고속 버스는 SpaceWire를 사용하고, 100Mbps이상의 속도를 지원할 수가 있지만, LVDS등의 고속 채널 설계 및 노이즈에 민감한 특성 때문에, 저속의 통신채널에서는 사용하기 어렵다. 저속의 데이터 채널을 위해서는 UART 방식이 사용된다. UART 방식은 RS-422 방식과 RS-485 방식이 사용되지만, 1553B 또는 SpaceWire 등과 같이 프로토콜이 정해지지 않아서, 사용자가 직접 프로토콜을 지정해야하는 문제가 있다. 또한 RS-422은 1:1 방식의 Point-to-Point UART를 위해서 사용되고, RS-485는 버스 방식의 연결을 지원할 수가 있지만, 동시에 여러개의 TX가 enable되는 경우에는 TX사이에 고장을 일으킬 수 있어서, 1번에 TX가 1개만 사용되도록 제어할 필요가 있다. 또한 RS-485방식의 버스를 구현할 경우에는 1553B처럼 와전하게 절연이 불가능하므로, 전기적이나 기능적으로 485버스에 문제가 발생할 경우에 절연과 같은 기능이 지원되도록 구현이 되어야 한다. 본 논문에서는 안정적인 485 UART버스 구현을 위한 기술에 대해서 평가하고 분석하도록 하겠다.

  • PDF

Comparison study of CPU processing load by I/O processing method through use case analysis (유즈케이스를 통해 분석해 본 I/O 처리방식에 따르는 CPU처리 부하 비교연구)

  • Kim, JaeYoung
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.57-64
    • /
    • 2019
  • Recently, avionics systems are being developed as integrated modular architecture applying the modular integration design of the functional unit to reduce maintenance costs and increase operating performance. Additionally, a partitioning operating system based on virtualization technology was used to process various mission control functions. In virtualization technology, the CPU processing load distribution is a key consideration. Especially, the uncertainty of the I/O processing time is a risk factor in the design of reliable avionics systems. In this paper, we examine the influence of the I/O processing method by comparing and analyzing the CPU processing load by the I/O processing method through use of case analysis and applying it to the example of spatial-temporal partitioning.

A Study on Implementation of RCM for Railway Vehicle (철도차량의 신뢰성기반 유지보수(RCM) 실시 방안)

  • Park, Byoung-Noh;Joo, Hae-Jin;Lee, Chang-Hwan;Lim, Sung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1487-1493
    • /
    • 2008
  • Railway vehicle is very important to implement the effective maintenance in proper to prevent any failure during operation period. Many railway authorities are making efforts to maintain the railway vehicle through scientific and systematic procedure. To achieve this, Reliability Centered Maintenance(RCM) is partially applied. The efficiency of RCM has proven and its terminology was familiar with nuclear power, military and chemical plant etc. since the commercial aircraft's industries has introduced the maintenance program based on the target of reliability. The application of RCM on railway vehicle can be utilized with systematic analysis method to select the best effective maintenance period and action to prevent the failures by selecting the equipment affecting the its safety and reliability. This paper is presented that the procedure of adequate and effective maintenance for railway vehicle by comparing among the related standards in example IEC60300-3,11, MIL-STD-2173, and technical documents or papers. In accordance with above result, RCM procedure is proposed to apply effectively for maintenance of railway vehicle. That is, (1) Analysis of data and Calculation of criticality per equipment (2) Selection of equipment to analyze (3) Analysis of failure mode and effect (4) Evaluation of maintenance method and period (5) Optimization of maintenance program through renewal of maintenance method and period.

  • PDF

Explosion Shock Measurement System of the Precursor Warhead for the Tandem Projectile (탠덤 비행체의 선구탄두 기폭 충격 측정 시스템 구현)

  • Choi, Donghyuk;An, Jiyeon;Kim, Yubeom;Son, Joongtak;Lee, Ukjun;Park, Hyunsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.503-510
    • /
    • 2021
  • This paper presents a system that measures the acceleration of the shock caused by the explosion of the precursor warhead for the tandem projectile. The proposed system, which is implemented based on the MIL-STD-810G, Method 517.1, consists of a miniaturized shock measurement device, a cable, accelerometers, and a trigger circuit. The shock measurement device has a size of ¢102 × 171 mm and cable has a length of 3 m. The operational confirmation test is conducted by implementing the measurement system. The Analysis of shock data(accelerometer output data) is carried out using Shock Response Spectrum(SRS), pseudo velocity and plot of acceleration time transient. Through measurement analysis, one can predict the damage of electronics in projectile when precursor warhead is exploded.

Analysis of Low-Frequency Magnetic SE of a Metal Plate: Diffusion and Slot Effects (도체 판의 자기장 차폐효과 분석: 확산과 슬롯 효과)

  • Park, Hyun Ho;Kwon, Jong Hwa
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.324-327
    • /
    • 2019
  • This study analyzes the low-frequency magnetic shielding effectiveness (SE) of a metal plate, in terms of diffusion and slot effects, by conducting a numerical simulation and implementing an analytical solution. When the metal has a low conductivity, the SE is dominated by the diffusion effect. However, when the conductivity and frequency both increase, the slot has a major influence on the SE. These results can be used as guidelines in the shielding design and SE requirements of electromagnetic pulse protection facilities.

Evaluation on High Altitude Electromagnetic Pulse(HEMP) Protection Performance of Carbon Nanotube(CNT) Embedded Ultra-High Performance Concrete(UHPC) (탄소나노튜브(CNT)를 혼입한 초고성능 콘크리트(UHPC)의 고고도 전자기파(HEMP) 방호성능 평가)

  • Jung, Myungjun;Hong, Sung-gul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.151-161
    • /
    • 2019
  • In this study, to evaluate the High Altitude Electromagnetic Pulse(HEMP) protection performance of UHPC/CNT composites by the content of Carbon nanotubes(CNTs), Electromagnetic Shielding Effectiveness(SE) test was performed based on MIL-STD-188-125-1. And the results were verified by applying the Antenna theory. In the case of UHPC with a thickness of 200 mm mixed with 1 % CNT of cement weight, the SE was 28.98 dB at 10 kHz and 45.94 dB at 1 GHz. Then the Scabbing limit thickness for bullet proof was computed based on the result of compressive strength test which was 170 MPa, and it was examined whether it satisfied the HEMP protection criteria. As a result, the required HEMP shielding criteria were satisfied in all frequency ranges as well as the scabbing limit thickness was reduced by up to 43 % compared with that of ordinary concrete.

A Study on the Flight Vibration Specification of High Speed Vehicle using Response Analysis (응답해석을 이용한 고속비행체의 비행진동규격 연구)

  • Hwang, Dongkee;Song, Ohseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.723-730
    • /
    • 2018
  • A well-designed flight vibration specification enables the optimum weight design of the Surface-to-Air or Air-to-Air Missile, improves the maneuverability of the flight vehicle, improves the engagement of target, and increases the price competitiveness of the components and the missile system. Conventional flight vibration specifications are used by using a somewhat higher standard as suggested in MIL-STD-810C, or based on accumulated data from developed similar missile systems. In this study, we confirmed the validity of FEA response analysis by comparing response data obtained by FEA and response data of real product. Also we proposed that each specification that reflects the structural characteristics of the place where the components are mounted is required instead of verifying all the components by a single flight vibration specification.

Design Method of Internal Structure Based on Dynamic Characteristic Analysis of 2.5ton Military Vehicle (2.5톤 군용차량 동특성 분석에 따른 내부구조물 설계 방안)

  • Yang, Ina;Choi, Wookyun;Jung, Kyongwook;Shim, Donghyouk;Son, Donghyeop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • Electronic equipment mounted on military vehicles is exposed to external shocks and vibrations. This causes problems in tactical operation and also causes cost loss in equipment maintenance. Therefore, to optimize the test standards for military vehicles with vibration, dynamic characteristics should be analyzed and standardized through actual driving tests. In this paper, the internal structure of 2.5tons military vehicle is designed in the form of a drawer and lathe, and the dynamic characteristics are identified by experiment, and the design is proposed.

Random Vibration Analysis of Portable Power Supply Container for Radar With U.S. Military Standards (미 군사규격을 적용한 레이더 전력공급용 이동식 컨테이너의 Random Vibration 해석)

  • Do, Jae-Seok;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.71-77
    • /
    • 2022
  • In times of war or emergencies, weapon systems, such as radars, must receive stable power. This can be achieved using improved onboard portable power systems made of steel containers. However, a breakdown can occur in the event of random vibration during transportation via a vehicle or train. Electrical-power shortages or restrictions pose a significant threat to security. In this study, Composite Wheeled Vehicle(CWV) data and rail cargo data with Acceleration Spectral Density(ASD), specified in MIL-STD-810H METHOD 514.8, were interpreted as input data of the three-axis random vibration method using ANSYS 19.2. Modal analysis was performed up to 500 Hz, and deformations in modes 1 to 117 were calculated to utilize all ASD data. The maximum equivalent stress in the three-axis direction was obtained using a random vibration analysis. Similarly, the margin of safety was calculated using the derived equivalent stress and material properties. Overall, the analysis verified that the portable container designed for the power supply system satisfied the required vibration demands.

EMC Safety Margin Verification for GEO-KOMPSAT Pyrotechnic Systems

  • Koo, Ja-Chun
    • International Journal of Aerospace System Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • Pyrotechnic initiators provide a source of pyrotechnic energy used to initiate a variety of space mechanisms. Pyrotechnic systems build in electromagnetic environment that may lead to critical or catastrophic hazards. Special precautions are need to prevent a pulse large enough to trigger the initiator from appearing in the pyrotechnic firing circuits at any but the desired time. The EMC verification shall be shown by analysis or test that the pyrotechnic systems meets the requirements of inadvertent activation. The MIL-STD-1576 and two range safeties, AFSPC and CSG, require the safety margin for electromagnetic potential hazards to pyrotechnic systems to a level at least 20 dB below the maximum no-fire power of the EED. The PC23 is equivalent to NASA standard initiator and the 1EPWH100 squib is ESA standard initiator. This paper verifies the two safety margins for electromagnetic potential hazards. The first is verified by analyzing against a RF power. The second is verified by testing against a DC current. The EMC safety margin requirement against RF power has been demonstrated through the electric field coupling analysis in differential mode with 21 dB both PC23 and 1EPWH100, and in common mode with 58 dB for PC23 and 48 dB for 1EPWH100 against the maximum no-fire power of the EED. Also, the EMC safety margin requirement against DC current has been demonstrated through the electrical isolation test for the pyrotechnic firing circuits with greater than 20 dB below the maximum no-fire current of the EED.