• Title/Summary/Keyword: MICROBIAL RESPIRATION

Search Result 94, Processing Time 0.032 seconds

Bacterial Abundances and Enzymatic Activities under Artificial Vegetation Island in Lake Paldang (팔당호에 설치된 인공식물섬에서의 세균 수와 체외효소 활성도의 변화)

  • Byeon, Myeong-Seop;Yoo, Jae-Jun;Kim, Ok-Sun;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.266-272
    • /
    • 2002
  • For analyzing function of a microbial ecosystem which was created under the artificial vegetation island (AVI) installed at Lake Paldang, zooplankton and bacterial numbers and exoenzyme activities (${\beta}$-glucosidase and phosphatase) were measured biweekly from 3 November 2()()1 to 20 April 2002 at AVI site and control site. Under the AVI, the water quality was worse than control site in term of comparing the environmental parameters. But, zooplankton number of AVI site was 25 times higher than that of control site. Respiratory active bacterial numbers were 3-8 times higher at AVI site. In addition, enzymatic activities were higher at AVI site than those of control site. These results suggest that the zooplankton-phytoplankton-bacteria relationships are closely coupled with each other and organic materials are eliminated by respiration of zooplankton and bacterial activities.

Review of Analytical and Assessment Techniques of Terminal Electron Accepting Processes (TEAPs) for Site Characterization and Natural Attenuation in Contaminated Subsurface Environments (오염 지중환경 특성화와 자연저감평가를 위한 말단전자수용과정(TEAPs) 분석 및 평가기술 소개)

  • Song, Yun Sun;Kim, Han-Suk;Kwon, Man Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.1-15
    • /
    • 2020
  • Monitoring and assessing terminal electron accepting processes (TEAPs) are one of the most important steps to remediate contaminated sites via various in-situ techniques. TEAPs are a part of the microbial respiration reactions. Microorganisms gain energy from these reactions and reduces pollutants. Monitoring TEAPs enables us to predict degradability of contaminants and degradation rates. In many countries, TEAPs have been used for characterization of field sites and management of groundwater wells. For instance, US Environmental Protection Agency (EPA) provided strategies for groundwater quality and well management by applying TEAPs monitoring. Denmark has also constructed TEAPs map of local unit area to develop effective groundwater managing system, particularly to predict and assess nitrogen contamination. In case of Korea, although detailed soil survey and groundwater contamination assessment have been employed, site investigation guidelines using TEAPs have not been established yet. To better define TEAPs in subsurface environments, multiple indicators including ion concentrations, isotope compositions and contaminant degradation byproducts must be assessed. Furthermore, dissolved hydrogen concentrations are regarded as significant evidence of TEAPs occurring in subsurface environment. This review study introduces optimal sampling techniques of groundwater and dissolved hydrogen, and further discuss how to assess TEAPs in contaminated subsurface environments according to several contamination scenarios.

Effects of Heat-stress on Rumen Bacterial Diversity and Composition of Holstein Cows (고온 스트레스 영향에 따른 홀스타인종 젖소의 반추위내 미생물 균총 변화)

  • Kim, Dong Hyeon;Kim, Myung Hoo;Kim, Sang Bum;Ha, Seung Min;Son, Jun Kyu;Lee, Ji Hwan;Hur, Tai Young;Lee, Jae Yeong;Park, Ji Hoo;Choi, Hee Chul;Lee, Hyun Jeong;Park, Beom Young;Ki, Kwang Seok;Kim, Eun Tae
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.4
    • /
    • pp.227-234
    • /
    • 2019
  • This study was performed to investigate the effect of heat-stressed environment on rumen microbial diversity in Holstein cows. Rectal temperature and respiration rate were measured and rumen fluid was collected under normal environment (NE; Temperature humidity index (THI)=64.6) and heat-stressed environment (HE; THI=87.2) from 10 Holstein cows (60±17.7 months, 717±64.4 kg) fed on the basis of dairy feeding management in National Institute of Animal Science. The rumen bacteria diversity was analyzed by using the Illumina HiSeqTM 4000 platform. The rectal temperature and respiratory rate were increased by 1.5℃ and 53 breaths/min in HE compared to that in NE, respectively. In this study, HE exposure induced significant changes of ruminal microbe. At phylum level, Fibrobacteres were increased in HE. At genus level, Ruminococcaceae bacterium P7 and YAD3003, Butyrivibrio sp. AE2032, Erysipelotrichaceae bacterium NK3D112, Bifidobacterium pseudolongum, Lachnospiraceae bacterium FE2018, XBB2008, and AC2029, Eubacterium celulosolvens, Clostridium hathewayi, and Butyrivibrio hungatei were decreased in HE, while Choristoneura murinana nucleopolyhedrovirus, Calothrix parasitica, Nostoc sp. KVJ20, Anabaena sp. ATCC 33047, Fibrobacter sp. UWB13 and sp. UWB5, Lachnospiraceae bacterium G41, and Xanthomonas arboricola were increased in HE. In conclusion, HE might have an effect to change the rumen microbial community in Holstein cows.

Effect of packing type and storage temperature on microbial growth and quality of fresh-cut onions (Allium cepa cv. turbo) (포장방법과 저장온도가 신선편이 양파의 품질 및 미생물 생장에 미치는 영향)

  • Bae, Yeoung-Seuk;Choi, Hyun-Jin;Lee, Jung-Soo;Park, Mehea;Choi, Ji-Weon;Kim, Ji-Gang
    • Food Science and Preservation
    • /
    • v.23 no.5
    • /
    • pp.623-630
    • /
    • 2016
  • Inappropriate storage of fresh-cut onions may result in losses of good quality. To understand storage conditions for shelf-life and quality of fresh-cut onions, The effect of packing type and storage temperature on the quality of fresh-cut onions was evaluated. Onions stored at $0^{\circ}C$ for 2 months were peeled off after removing root and shoot parts. Each three peeled onions were packed in a polyethylene film (PE, $50{\mu}m$) or in a polyethylene/polypropylene film (PE/PP, $100{\mu}m$) with vacuum treatment (70 cmHg) and stored at different temperatures (4, and $10^{\circ}C$) for 21 days. The following analyses were examined to evaluate the quality of fresh-cut onions: microbial population, surface color, titratable acidity and pH, respiration rate, and sensory quality. Fresh-cut onions stored at $4^{\circ}C$ showed less aerobic and coliform bacterial population than those stored at $10^{\circ}C$ during observation periods. Fungal populations of fresh-cut onions packed in PE film stored at $10^{\circ}C$ increased significantly after 13 days. E. coli was not detected in all treatments during whole storage periods. Surface colors of fresh-cut onions were not affected by packing type and storage temperature, however, color difference (${\Delta}E$) of fresh-cut onions in PE/PP film stored at $10^{\circ}C$ was significantly higher than those of other treatments. Titratable acidity of fresh-cut onions was not affected by packing type and storage temperature. However, pH of fresh-cut onions packed in PE film stored at $10^{\circ}C$ increased gradually over the whole storage period. Fresh-cut onions packed in PE film showed higher $CO_2$ and less $O_2$ concentrations at $10^{\circ}C$ than those at $4^{\circ}C$. The sensory quality of fresh-cut onions was significantly affected by packing type and storage temperature after 13 days. Particularly, vacuum treatment in PE/PP film showed better sensory quality than that of PE film package at the same storage temperature. It was concluded that vacuum treatment and storage at $4^{\circ}C$ could be effective to prolong the quality of fresh-cut onions up to 21 days.

Role of Wetland Plants as Oxygen and Water Pump into Benthic Sediments (퇴적물내의 산소와 물 수송에 관한 습지 식물의 역할)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.436-447
    • /
    • 2004
  • Wetland plants have evolved specialized adaptations to survive in the low-oxygen conditions associated with prolonged flooding. The development of internal gas space by means of aerenchyma is crucial for wetland plants to transport $O_2$ from the atmosphere into the roots and rhizome. The formation of tissue with high porosity depends on the species and environmental condition, which can control the depth of root penetration and the duration of root tolerance in the flooded sediments. The oxygen in the internal gas space of plants can be delivered from the atmosphere to the root and rhizome by both passive molecular diffusion and convective throughflow. The release of $O_2$ from the roots supplies oxygen demand for root respiration, microbial respiration, and chemical oxidation processes and stimulates aerobic decomposition of organic matter. Another essential mechanism of wetland plants is downward water movement across the root zone induced by water uptake. Natural and constructed wetlands sediments have low hydraulic conductivity due to the relatively fine particle sizes in the litter layer and, therefore, negligible water movement. Under such condition, the water uptake by wetland plants creates a water potential difference in the rhizosphere which acts as a driving force to draw water and dissolved solutes into the sediments. A large number of anatomical, morphological and physiological studies have been conducted to investigate the specialized adaptations of wetland plants that enable them to tolerate water saturated environment and to support their biochemical activities. Despite this, there is little knowledge regarding how the combined effects of wetland plants influence the biogeochemistry of wetland sediments. A further investigation of how the Presence of plants and their growth cycle affects the biogeochemistry of sediments will be of particular importance to understand the role of wetland in the ecological environment.

Optimal DO Setpoint Decision and Electric Cost Saving in Aerobic Reactor Using Respirometer and Air Blower Control (호흡률 및 송풍기 제어 기반 포기조 최적 DO 농도 설정과 전력 비용 절감 연구)

  • Lee, Kwang Su;Kim, Minhan;Kim, Jongrack;Yoo, Changkyoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.581-586
    • /
    • 2014
  • Main objects for wastewater treatment operation are to maintain effluent water quality and minimize operation cost. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. The oxygen uptake rate (OUR) is real-time measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO set-point needed for the micro-organism is suggested based on real-time measurement of oxygen uptake of micro-organism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal set-point decision system by providing the necessary oxygen supply requirement to the micro-organisms coping with the variations of influent loading.

Change of Oxidation/Reduction Potential of Solution by Metal-Reducing Bacteria and Roles of Biosynthesized Mackinawite (금속환원미생물에 의한 수용액의 산화/환원전위 변화 및 생합성 맥키나와이트의 역할)

  • Lee, Seung-Yeop;Oh, Jong-Min;Baik, Min-Hoon;Lee, Yong-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.279-287
    • /
    • 2011
  • In order to identify if bacteria surviving in soils and groundwater can change the oxidation/reduction potential of groundwater, Eh values of solution that contained bacteria were measured for 2 weeks. The Eh values of the solution reacted with sulfate-reducing bacteria decreased from -120 mV to -500 mV in 5 days, and $Desulfuricans$ was superior to $Vulgaris$ in reducing the solution. The Eh value was relatively higher for the solution containing $Shewanella$, iron-reducing bacteria, showing -400 mV. During the Eh decrease by the metal-reducing bacteria, a sulfide mineral such as mackinawite (FeS) started precipitating through the microbial reducing process for sulfate and ferric iron. These results show that the ORP of natrual groundwater may be sensitive to the geomicrobial respiration. In addition, a subsurface environment where groundwater is highly reduced and sulfide minerals are largely biogenerated may be a good place to retard the migration of oxidized radionu-clides by making them precipitated as reduced forms.

Modified Atmosphere Storage for Extending Shelf Life of Oyster Mushroom and Shiitake (환경가스조절 저장방법을 이용한 느타리버섯과 표고버섯의 유통기간 연장)

  • Han, Dae-Seok;Ahn, Byung-Hak;Shin, Hyun-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.376-381
    • /
    • 1992
  • In order to study the effect of modified atmosphere storage on extending shelf life of mushrooms, oyster mushroom and Shiitake were wrapped with polyethylene film (PE, $50\;{\mu}m$), and stored at $0.5^{\circ}C$. Mushrooms packed with conventional hardboard box (4kg) lost marketability within $5{\sim}6$ days due to weight loss, shrinkage, browning, spore formation and/or mycellium growth. PE-packing could prevent or retard the deterioration of the mushrooms in the aspects of appearance, texture, discoloration, and microbial contamination. This situation can be best characterized by the reduced respiration rate resulted from the elevated level of carbon dioxide and the reduced level of oxygen in the bag. Although the appearance of the oyster mushroom was maintained for one month, its shelf life was limited to 15 days because of tissue softening. Discoloration of the pileus of shiitake mushroom appears to be the most important factor to determine its marketability. For example, extension of shelf life of Dongo was limited to 15 days, principally due to the browning of the pileus. Shelf life of Hawgo whose color of the pileus changed little over the experimental period, however, could be extened to more than one month.

  • PDF

The Distribution of phosphorus in the Gomso Bay Tidal Flat (곰소만 조간대에서 인의 시공간적 분포)

  • 양재삼;김영태
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.171-180
    • /
    • 2002
  • The temporal and spatial distributions of phosphorus have been investigated in the Gomso Bay, Korea. TP, PIP, TOP and DIP in sediment were found 548.8mg P kg$^{-1}$ , 426.1mg P kg$^{-1}$ , 122.6mg P kg$^{-1}$ , and 0.217mg P kg$^{-1}$ , respectively with a decreasing order of PIP>TOP>DIP. Any temporal or spatial trend has not been found on the distribution of TP in the sediment, except the high TP values near the mouth of Julpo-chun. We found seasonal patterns high TOP(28.90% of TP) and low TIP(71.10% of TP) in August, but low TOP(15.63% of TP) and high TIP(84.38% of TP) in November. There were three times higher DIP concentration in August than in November. Such case is probably not only due to the enhanced supply of DIP directly from the decomposition of organic matter from overlying water in summer, but also the released phosphate from the adsorbed particulate matter such as PIP under the low pH and Eh conditions at the subsurface layers of the sediment induced by the active microbial respiration of increased organic materials in summer. Primarily, the source of phosphorous from municipal sewage strongly influenced the early stage of the distribution of all the phosphorous in the Gomso tidal flat. Notwithstanding, through the processes of diagenesis in sediment, water temperature and organic contents probably functioned as the key parameters to control the temporal distributions of TOP, TIP and DIP in the Gomso tidal flat.

Quality Changes in Mushrooms (Agaricus bisporus) due to Their Packaging Materials during Their Storage (포장재에 따른 양송이버섯의 저장 중 품질변화)

  • Lee, Da-Uhm;Chang, Min-Sun;Cho, Sun-Duk;Jhune, Chang-Sung;Kim, Gun-Hee
    • Food Science and Preservation
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • Mushrooms have a shorter shelf-life than most vegetables because of their very high respiration rates, sensitivity to enzymatic browning and susceptibility to microbial spoilage. This study was conducted to investigate effects of various packaging materials and precooling on the quality of mushrooms (Agaricus bisporus). Mushrooms were precooled at $4^{\circ}C$ for three hours and packaged using the following packaging materials; 1) polyethylene (PE) film bags of 0.03 mm thickness, 2) polypropylene (PP) film bags of 0.03 mm thickness, and 3) polystyrene (PS) tray+polyvinyl chloride (PVC) wrapper. The physiological changes (weight loss, gas composition, color, firmness, and sensory evaluation) associated with postharvest deterioration were monitored for 17 days at $10^{\circ}C$. The results showed that the PP film bag maintained quality of mushrooms most effectively, especially PP film bags inhibited decreasing firmness. The samples also exhibited smaller decreases in weight loss rate (0.57%) and Hunter L value (84.44) than PS tray+PVC wrapper (7.73%, 82.19) and PE film bags (0.89%, 82.96). Sensory evaluation level in all samples remained relatively constant during the first 5 days of storage. However, PE film bags and PS tray+PVC wrapper showed lower score of flavor, texture and color than PP film bags after 8 days of storage. This study suggested that PP film bag packaging effectively extends shelf-life of mushrooms during storage.