• 제목/요약/키워드: MICROBIAL BIOMASS C

검색결과 115건 처리시간 0.027초

정수장 활성탄 여과지의 생물막과 그 활성도 (Biofilms and their Activity in Granular Activated Carbons Established in a Drinking Water Treatment Plant)

  • 이지영;김세준;정익상;조경제
    • 상하수도학회지
    • /
    • 제24권6호
    • /
    • pp.661-674
    • /
    • 2010
  • Bacterial biomass and its activity were measured in two kinds of granular activated carbon (GAC), the experimental and existing biofiltration system in a drinking water plant. The bacterial biomass was around 210 to 250 nmol P/g WW with phospholipid concentration at acclimation of ozonation treatment. The phospholipid biomass shows more or less a declining gradient along filter depth and no clear seasonality in its values. On the other hand, the microbial activity of [$^3H$]-thymidine and [$^{14}C$]-acetate incorporation within cells increased significantly along the filter depth, showing the difference of three fold between the upper and bottom layer. These factors support the different microbial composition or metabolic activity along the depth of GAC column. Turnover rates, the rate of bacterial biomass and production of biofilm, ranged from 0.26 /hr to 0.37 /hr, indicating a highly rapid recovery itself at amature state. In the non-ozonation treatment, the bacterial biomass was lower than in the ozonation and biological activity also declined towards the filter depth. The biomass levels during cessation of ozonation in the existing GAC filters were 68% of the actively ozonated state.

안동 사문암지대의 중금속 함유 낙엽의 분해 (Decomposition of Leaf Litter Containing Heavy Metals in the Andong Serpentine Area, Korea)

  • 류새한;김정명;차상섭;심재국
    • 한국환경생태학회지
    • /
    • 제24권4호
    • /
    • pp.426-435
    • /
    • 2010
  • 본 연구는 사문암 토양의 화학적 성질과 토양미생물량 및 토양효소 등 토양의 생물학적 활성을 대조구의 비사문암 토양과 비교하고, 사문암과 비사문암에서 공통으로 서식하는 새(Arundinella hirta)와 억새(Miscanthus sinensis var. purpurascens)의 낙엽이 입지가 다른 사문암지역과 비사문암 지역에서 분해될 때 분해율의 차이가 어떻게 유발되는지 9개월 동안 야외에서 교차 실험하였다. 사문암 토양은 비사문암 토양에 비하여 높은 pH, 낮은 dehydrogenase 와 urease활성을 나타내었으며 alkaliphosphatase의 활성은 높았다. 두 토양에서 microbial biomass-C와 N의 차이는 유의하지 않았으나 사문암 토양에서 microbial biomass-N함량이 더 높게 나타나 비사문암 토양에서 보다 낮은 토양의 C/N을 나타내는 원인이 되었다. 사문암지역에서의 낙엽분해실험에서는 사문암지역에서 획득한 새와 억새 낙엽이 각각 39.8%, 38.5%의 중량감소를 보였으며, 비사문암 토양에서 획득한 낙엽은 각각 41.1%, 41.7%의 중량감소를 나타내었다. 비사문암지역에서의 낙엽분해실험에서는 사문암낙엽이 46.8%, 42.2% 그리고 비사문암낙엽은 44.8%, 37.4%의 중량감소를 각각 보였다. 이러한 결과는 중금속을 포함하는 토양의 영향보다는 낙엽의 질적 차이가 분해율에 더 큰 영향을 미쳤음을 나타내준다. 일반적으로 낮은 C/N을 갖는 낙엽이 더 빨리 분해된다는 결과와는 달리 낮은 C/N을 갖는 사문암낙엽의 분해가 느린 것은 낙엽에 포함된 중금속의 저해가 낙엽의 C/N이나 lignin/N과 같은 낙엽의 질적 차이에서 유발되는 낙엽분해의 저해보다 큰 영양을 미친다는 결과를 보여주었다. 또한 낙엽분해가 진행되는 동안 낙엽내의 Cr, Ni과 Mg, Fe의 농도는 점차 증가하였으며 이러한 경향은 사문암지역에서 현저하였다.

Root Barrier and Fertilizer Effects on Soil CO2 Efflux and Cotton Yield in a Pecan-Cotton Alley Cropping System in the Southern United States

  • Lee, Kye-Han;An, Kiwan
    • 한국산림과학회지
    • /
    • 제95권2호
    • /
    • pp.177-182
    • /
    • 2006
  • Little information is available on soil $CO_2$ efflux and crop yield under agroforestry systems. Soil $CO_2$ efflux, microbial biomass C, live fine root biomass, and cotton yield were measured under a pecan (Carya illinoinensis K. Koch)-cotton (Gossypium hirsutum L.) alley cropping system in southern USA. A belowground polyethylene root barrier was used to isolate tree roots from cotton which is to provide barrier and non-barrier treatments. The barrier and non-barrier treatment was randomly divided into three plots for conventional inorganic fertilizer application and the other three plots for organic poultry litter application. The rate of soil $CO_2$ efflux and the soil microbial biomass C were affected significantly (P < 0.05) by the fertilizer treatment while no significant effect of the barrier treatment was occurred. Cotton lint yield was significantly (P < 0.0 I) affected by the root barrier treatment while no effect was occurred by the fertilizer treatment with the yields being greatest ($521.2kg\;ha^{-1}$) in the root barrier ${\times}$ inorganic fertilizer treatment and lowest ($159.8kg\;ha^{-1}$) in the non-barrier ${\times}$ inorganic fertilizer treatment. The results suggest that the separation of tree-crop root systems with the application of inorganic fertilizer influence the soil moisture and soil N availability, which in tum will affect the magnitude of crop yield.

Soil Carbon Dioxide Flux and Organic Carbon in Grassland after Manure and Ammonium Nitrate Application

  • Lee, Do-Kyoung;Doolittle, James J.
    • 한국환경농학회지
    • /
    • 제24권3호
    • /
    • pp.238-244
    • /
    • 2005
  • Fertilization effects on changes in soil $CO_2$ flux and organic C in switchgrass (Panicum virgatum L.) land managed for biomass production were investigated. The mean daily soil $CO_2$ flux in the manure treatment was 5.63 g $CO_2-C\;m^{-2}\;d^{-1}$, and this was significantly higher than the mean value of 3.36 g $CO_2-C\;m^{-2}\;d^{-1}$ in the control. The mean daily $CO_2$ fluxes in N and P fertilizer treatments plots were not different when compared to the value in the control plots. Potentially mineralizable C (PMC), soil microbial biomass C (SMBC), and particulate organic C (POC) were highest at the 0 to 10 cm depth of the manure treatment. Potentially mineralizable C had the strongest correlation with SMBC (r = 0.91) and POC (r = 0.84). There was also a strong correlation between SMBC and POC (r = 0.90). Our results indicated that for the N and P levels studied, fertilization had no impact on temporal changes in soil organic C, but manure application had a significant impact on temporal changes in soil $CO_2$ evolution and active C constituents such as PMC, SMBC, and POC.

Chemical and Biological Indicators of Soil Quality in Conventional and Organic Farming Apple Orchards

  • Lee, Yoon-Jung;Chung, Jong-Bae
    • Journal of Applied Biological Chemistry
    • /
    • 제50권2호
    • /
    • pp.88-96
    • /
    • 2007
  • Organic farming systems based on ecological concepts have the potential to produce sustainable crop yields with no decline in soil and environmental qualities. Recent expansion of sustainable agricultural systems, including organic farming, has brought about need for development of sustainable farming systems based on value judgments for key properties of importance for farming. Chemical and microbiological properties were chosen as indicators of soil quality and measured at soil depth intervals of 5-20 and 20-35 cm in conventional and organic-based apple orchards located in Yeongchun, Gyeongbuk. The orchards were two adjacent fields to ensure the same pedological conditions except management system. Soil pH in organic farming was around 7.5, whereas below 6.0 in conventional farming. Organic farming resulted in significant increases in organic matter and Kjeldahl-N contents compared to those found with conventional management. Microbial populations, biomass C, and enzyme activities (except acid phosphatase) in apple orchard soil of organic farming were higher than those found in conventional farming. Higher microbial quotient ($C_{mic}/C_{org}$ ratio) and lower microbial metabolic quotient for $CO_2(qCO_2)$ in organic farming confirmed that organic farming better conserves soil organic carbon. Biological soil quality indicators showed significant positive correlations with soil organic matter content. These results indicate organic-based farming positively affected soil organic matter content, thus improving soil chemical and biological qualities.

The Relationship between Microbial Characteristics and Glomalin Concentrations of Controlled Horticultural Soils in Gyeongnam Province

  • Kim, Min Keun;Ok, Yong Sik;Heo, Jae-Young;Choi, Si-Lim;Lee, Sang-Dae;Shin, Hyun-Yul;Kim, Je-Hong;Kim, Hye Ran;Lee, Young Han
    • 한국토양비료학회지
    • /
    • 제47권2호
    • /
    • pp.107-112
    • /
    • 2014
  • Glomalin has been suggested as an enhancer for soil stability by promoting the aggregation. In this study, we examined the concentrations of glomalin and microbial characteristics in 25 controlled horticultural soils sampled from Gyeongnam Province. Total glomalin had a significant positive correlation with soil organic matter (p < 0.01), soil microbial biomass carbon (p < 0.05), and dehydrogenase activity (p < 0.05) in controlled horticultural soils. In addition, the total glomalin had a significant positive correlation with concentrations of total fatty acid methyl esters, Gram-negative and Gram-positive bacteria, fungi, and arbuscular mycorrhizal fungi in controlled horticultural soils (p < 0.001). In conclusion, the concentration of total glomalin could be an indicator of microbial biomass richness for sustainable agriculture in controlled horticultural soils.

조간대 퇴적 환경에 따른 저서미세조류 색소와 총 아데노신 3인산(ATP: Adenosine-5' triphosphate) 비교 연구 (Comparative Study on Microphytobenthic Pigments and Total Microbial Biomass by ATP in Intertidal Sediments)

  • 하선용;최보형;민준오;전수아;신경훈
    • Ocean and Polar Research
    • /
    • 제35권1호
    • /
    • pp.39-50
    • /
    • 2013
  • Biomass and community composition of microphytobentos in tidal flats were studied by HPLC analysis and also investigated to examine the relationship between microphytobenthic pigments and Adenosine-5' triphosphate (ATP) as an index of total microbial biomass in intertidal environments (muddy and sandy sediment) of Gyeonggi Bay, west coast of Korea. Microphytobenthic pigments and ATP concentration in muddy sediment were the highest at the surface while the biomass of microphytobenthos in sandy sediment was the highest at the sub-surface (0.75 cm sediment depth). The detected pigments of microphytobenthos were chlorophyll a, b (euglenophytes), $c_3$, peridinin (dinoflagellates), fucoxanthin (diatom or chrysophytes), diadinoxanthin, alloxanthin (cryptophytes), diatoxanthin, zeaxanthin (cyanobacteria), ${\beta}$-carotein, and pheophytin a (the degraded product of chlorophyll a). Among the pigments which were detected, the concentration of fucoxanthin was the highest, indicating that diatoms dominated in the microphytobenthic community of the tidal flats. There was little significant correlation between OC (Organic Carbon) and ATP in both sediments. However, a positive correlation between chlorophyll a concentration and ATP concentration was found in sandy sediment, suggesting that microbial biomass could be affected by labile OC derived from microphytobenthos. These results provide information that may help us understand the relationship between microphytobenthos and microbial biomass in different intertidal sediment environments.

지방산에 의한 경지 및 미경지 토양의 미생물군집평가 (Evaluation of Microbial Community Composition in Cultivated and Uncultivated Upland Soils by Fatty Acids)

  • 서장선;전길형;권장식;김상효;백형진
    • 한국토양비료학회지
    • /
    • 제36권4호
    • /
    • pp.239-246
    • /
    • 2003
  • 경지이용이 토양 화학성과 미생물 군집상에 어떠한 영향이 있는지 경지 및 미경지 토양을 채취하여 토양지방산, 미생물밀도 및 미생물체량간(biomass C)의 관계를 조사하였다. 경지와 미경지 토양의 pH는 큰 차이가 없었지만, 전기전도도 (EC), 유기물, 유효인산 및 치환성 양이온 함량은 미경지 토양에 비해 경지토양에서 높았다. 훈증추출법에 의해 측정된 미생물체량과 지방산 총 함량간에는 유의한 정의 상관관계가 있었다 ($r^2=0.557$, n=18, p<0.01). 세균, 방선균, 사상균, 원생동물을 나타내는 지표성 지방산 함량은 경지토양에서 높은 경향을 보였다.

화산회토 감귤원의 표토관리방법이 토양 미생물상에 미치는 영향 (Effect of Soil surface Soil Management Practices on Microflora in Volcanic Ash Soils of Citrus Orchard)

  • 좌재호;임한철;고상욱;현해남
    • 한국토양비료학회지
    • /
    • 제37권3호
    • /
    • pp.165-170
    • /
    • 2004
  • 화산회토 노지 감글원에서 청경, 초생, 부초재배 등의 표토관리 방법이 토양의 미생물밀도, 효소활성 및 microbial biomass C에 미치는 영향을 조사하였다. 1997년에 개화기인 5월과 과실비대기인 9월에 청경재배, 초생재배, 부초재배 감귤원 각각 10개소에서 토양을 채취하여 조사한 결과는 다음과 같다. 표토관리방법에 따른 토양의 화학성 차이는 없었으며 pH는 평균 4.7로 낮았다. 유기물과 질소 함량은 평균값으로 각각 140.2 및 $6g\;kg^{-1}$이었으나 조사지점에 따라 다양하였다. 감귤원 토양에서 호기성 세균은 $26,2-47.3{\times}10^6cfu\;g^{-1}$ 수준의 분포를 나타냈으며 호기성 세균속 중에는 Pseudomoras spp., 고온성 Bacillus spp., Rhizobium spp. 등이 우점하는 경향이었다. 방선균은 $1.8-84.6{\times}10^5cfu\;g^{-1}$ 수준으로 분포를 하였고 개화기에 밀도가 높았다. 사상균은 $26.4-182.1{\times}10^5cfu\;g^{-1}$ 수준의 분포를 나타냈으며 초생재배와 부초재배에서 많았다. 과실비대기에 토양 인산효소활성은 청경재배에서 $239.6{\mu}g\;PNP\;g\;soil^{-1}\;h^{-1}$, 토양 cellulase 활성은 초생재배에서 $602.6{\mu}g\;GE\;g\;soil^{-1}$\;24\;h^{-1}$로 높았다. Microbial biomass C는 부초재배에서 $256.3mg\;C\;kg\;soil^{-1}$로 가장 높았다.

The Role of Heterotrophic Protists in the Planktonic Community of Kyeonggi Bay, Korea

  • Lee, Won-Je;Choi, Joong-Ki
    • Journal of the korean society of oceanography
    • /
    • 제35권1호
    • /
    • pp.46-55
    • /
    • 2000
  • In order to understand the role of heterotrophic protists in the coastal waters off Inchon, abiotic and biotic factors were measured from January 1992 to February 1993. Microbial carbon biomass (mean212.9$^{\pm}$119.1 $^{\mu}$gC/1) was composed of 4.2% bacteria, 0.3% cyanobacteria, 12.l% autotrophic nanoflagellates, 6.6% heterotrophic nanoflagellates, 5.8 heterotrophic ciliates and 71.0% diatom and Mesodinium spp. The carbon biomass of heterotrophic protists (heterotrophic nanoflagellates and ciliates) was highest in October 1992 (mean 37.8$^{\pm}$22.5 $^{\mu}$gC/1), and was low in August 1992 (mean 21.2$^{\pm}$10.8 $^{\mu}$gC/1) and in February 1993 (mean 19.5$^{\pm}$6.4 $^{\mu}$gC/1). However, the contribution of heterotrophic protists to total microbial carbon biomass was higher in January 1992 and February 1993 (about 21%) when the phytoplankton was dominated by nanoplankton than in August and October (about 9%) when large diatoms occurred in large numbers. This study suggests that in Kyeonggi Bay heterotrophic protists might play a more important role as prey for zooplankton and as consumers of bacteria & small phytoplankton in less productive seasons (especially winter) than in productive seasons (autumn), and that the classic trophic pathway from diatoms through copepods to fish might be dominant nearly every season.

  • PDF