• Title/Summary/Keyword: MIB-1 LI

Search Result 47, Processing Time 0.029 seconds

Anti-Cancer Activity of the Leave Extracts of Rodgersia podophylla through β-catenin Proteasomal Degradation in Human Cancer Cells (도깨비부채(Rodgersia podophylla) 잎 추출물의 인간 암세포의 β-catenin 분해 유도 활성)

  • Kim, Ha Na;Kim, Jeong Dong;Son, Ho-Jun;Park, Gwang Hun;Eo, Hyun Ji;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.32 no.5
    • /
    • pp.442-447
    • /
    • 2019
  • In this study, we evaluated the effect of Rodgersia podophylla leave extracts (RPL) on ${\beta}-catenin$ level in human cancer cells. RPL dose-dependently inhibited cell proliferation in SW480, A549, MDA-MB-231, PC-3 and AsPC-1 cells. RPL dramatically decreased ${\beta}-catenin$ protein level in all cancer cells. However, decreased level of ${\beta}-catenin$ mRNA expression was observed in A549 and AsPC-1 cells. In addition, RPL dramatically attenuated cyclin D1 mRNA expression in all cancer cells. MG132 decreased the downregulation of ${\beta}-catenin$ protein level induced by RPL in all cancer cells, while RPL-induced downregulation of ${\beta}-catenin$ was inhibited by the inhibition of $GSK-3{\beta}$ by LiCl in MDA-MB-231 cells. RPL phosphorylated ${\beta}-catenin$ and $GSK-3{\beta}$. In addition, the inhibition of $GSK-3{\beta}$ by LiCl attenuated RPL-induced ${\beta}-catenin$ phosphorylation. Based on these findings, RPL may be a potential candidate for the development of chemopreventive or therapeutic agents for human cancer.

Silencing of Lysyl Oxidase Gene Expression by RNA Interference Suppresses Metastasis of Breast Cancer

  • Liu, Jian-Lun;Wei, Wei;Tang, Wei;Jiang, Yi;Yang, Hua-Wei;Li, Jing-Tao;Zhou, Xiao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3507-3511
    • /
    • 2012
  • Objective: The aim of this study was to investigate possible mechanisms of LOX gene effects on invasion and metastasis of breast cancer cells by RNA interference. Methods: LOX-RNAi-LV was designed, synthesized, and then transfected into a breast cancer cell line (MDA-MB-231). Expression of LOX, MMP-2 and MMP-9 was determined by real-time PCR, and protein expression of LOX by Western blotting. Cell migration and invasiveness were assessed with Transwell chambers. A total of 111 cases of breast cancer tissues, cancer-adjacent normal breast tissues, and 20 cases of benign lesion tissues were assessed by immunohistochemistry. Results: Expression of LOX mRNA and protein was suppressed, and the expression of MMP-2 and MMP-9 was significantly lower in the RNAi group than the control group (P<0.05), after LOX-RNAi-LV was transfection into MDA-MB-231 cells. Migration and invasion abilities were obviously inhibited. The expression of LOX protein in breast cancer, cancer-adjacent normal breast tissues and benign breast tumor were 48.6% (54/111), 26.1% (29/111), 20.0% (4/20), respectively, associations being noted with clinical stage, lymph node metastasis, tumor size and ER, PR, HER2, but not age. LOX protein was positively correlated with MMP-2 and MMP-9. Conclusion: LOX displayed an important role in invasion and metastasis of breast cancer by regulating MMP-2 and MMP-9 expression which probably exerted synergistic effects on the extracellular matrix (ECM).

Synthesis of SnO2-Mn-C60 Nanocomposites and Their Photocatalytic Activity for Degradation of Organic Dyes

  • Li, Jiulong;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.287-294
    • /
    • 2017
  • Nanocomposites based on $SnO_2-Mn$ were synthesized by the reaction of tin (II) chloride dihydrate and manganese (II) chloride tetrahydrate at a molar ratio of 10:1 in the presence of ammonium hydroxide at $80^{\circ}C$. The $SnO_2-Mn$ nanocomposites were stirred with fullerene [$C_{60}$] in a mass ratio of 2:1 in tetrahydrofuran to prepare $SnO_2-Mn-C_{60}$ nanocomposites; these nanocomposites were obtained upon heating the mixture of $SnO_2-Mn$ nanocomposites and fullerene [$C_{60}$] in an electric furnace at $700^{\circ}C$ for 2 h. The synthesized $SnO_2-Mn-C_{60}$ nanocomposites were confirmed through various characterization methods such as X-ray diffraction and scanning electron microscopy. The photocatalytic activities of the $SnO_2-Mn-C_{60}$ nanocomposites were demonstrated by the degradation of the organic dyes BG, MB, MO, and RhB under 254 nm irradiation and evaluated using UV-Vis spectrophotometry.

Ginsenoside F1 attenuates pirarubicin-induced cardiotoxicity by modulating Nrf2 and AKT/Bcl-2 signaling pathways

  • Yang Zhang;Jiulong Ma;Shan Liu;Chen Chen;Qi Li;Meng Qin;Liqun Ren
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.106-116
    • /
    • 2023
  • Background: Pirarubicin (THP) is an anthracycline antibiotic used to treat various malignancies in humans. The clinical usefulness of THP is unfortunately limited by its dose-related cardiotoxicity. Ginsenoside F1 (GF1) is a metabolite formed when the ginsenosides Re and Rg1 are hydrolyzed. However, the protective effects and underlying mechanisms of GF1 on THP-induced cardiotoxicity remain unclear. Methods: We investigated the anti-apoptotic and anti-oxidative stress effects of GF1 on an in vitro model, using H9c2 cells stimulated by THP, plus trigonelline or AKT inhibitor imidazoquinoxaline (IMQ), as well as an in vivo model using THP-induced cardiotoxicity in rats. Using an enzyme-linked immunosorbent test, the levels of malondialdehyde (MDA), brain natriuretic peptide (BNP), creatine kinase (CK-MB), cardiac troponin (c-TnT), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione (GSH) were determined. Nuclear factor (erythroid-derived2)-like 2 (Nrf2) and the expression of Nrf2 target genes, including heme oxygenase-1 (HO-1), glutathione-S-transferase (Gst), glutamate-cysteine ligase modifier subunit (GCLM), and expression levels of AKT/Bcl-2 signaling pathway proteins were detected using Western blot analysis. Results: THP-induced myocardial histopathological damage, electrocardiogram (ECG) abnormalities, and cardiac dysfunction were reduced in vivo by GF1. GF1 also decreased MDA, BNP, CK-MB, c-TnT, and LDH levels in the serum, while raising SOD and GSH levels. GF1 boosted Nrf2 nuclear translocation and Nrf2 target gene expression, including HO-1, Gst, and GCLM. Furthermore, GF1 regulated apoptosis by activating AKT/Bcl-2 signaling pathways. Employing Nrf2 inhibitor trigonelline and AKT inhibitor IMQ revealed that GF1 lacked antioxidant and anti-apoptotic effects. Conclusion: In conclusion, GF1 was found to alleviate THP-induced cardiotoxicity via modulating Nrf2 and AKT/Bcl-2 signaling pathways, ultimately alleviating myocardial oxidative stress and apoptosis.

In vivo antioxidant, hypoglycemic, and anti-tumor activities of anthocyanin extracts from purple sweet potato

  • Zhao, Jin-Ge;Yan, Qian-Qian;Lu, Li-Zhen;Zhang, Yu-Qing
    • Nutrition Research and Practice
    • /
    • v.7 no.5
    • /
    • pp.359-365
    • /
    • 2013
  • Anthocyanin from purple sweet potato (PSP) extracted by microwave baking (MB) and acidified electrolyzed water (AEW) exhibited antioxidant activity. After further purification by macroporous AB-8 resin, the color value of PSP anthocyanin (PSPA) reached 30.15 with a total flavonoid concentration of 932.5 mg/g. The purified extracts had more potent antioxidant activities than the crude extracts. After continuously administering the PSP extracts to 12-mo-old mice for 1 mo, the anti-aging index of the experimental group was not significantly different from that of 5-mo-old mice. To a certain degree, PSPA was also effective for controlling plasma glucose levels in male Streptozocin (STZ)-treated diabetic mice. In addition, the extracts inhibited Sarcoma S180 cell growth in ICR mice. Mice consuming the PSP extracts formed significantly fewer and smaller sarcomas than mice consuming the control diets. The highest inhibition rate was 69.03%. These results suggest that anthocyanin extracts from PSP not only exert strong antioxidant effects in vitro, but also had anti-aging, anti-hyperglycemic, and anti-tumor activities.

Identification of a Novel Fusion Gene (HLA-E and HLA-B) by RNA-seq Analysis in Esophageal Squamous Cell Carcinoma

  • Jiang, Yu-Zhang;Li, Qian-Hui;Zhao, Jian-Qiang;Lv, Jun-Ji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2309-2312
    • /
    • 2014
  • Esophageal squamous cell carcinoma (ESCC) is the most common histologic subtype of esophageal cancer and is characterized by a poor prognosis. Determining gene changes in ESCCs should improve understanding of putative risk factors and provide potential targets for therapy. We sequenced about 55 million pair-end reads from a pair of adjacent normal and ESCC samples to identify the gene expression level and gene fusion. Sanger sequencing was used to verify the result. About 17 thousand genes were expressed in the tissues, of which approximately 2400 demonstrated significant differences between tumor and adjacent non tumor tissue. GO and KEGG pathway analysis revealed that many of these genes were associated with cellular adherence and movement, simulation responses and immune responses. Notably we identified and validated one fusion gene, HLA-E and HLA-B, located 1 MB apart. We also identified thousands of remarkably expressed transcripts. In conclusion, a novel fusion gene HLA-E and HLA-B was identified in ESCC via whole transcriptome sequencing, which would be a biomarker for ESCC diagnosis and target for therapy, shedding new light for better understanding of ESCC tumorigenesis.

Design of VoIP System over MANET (MANET 기반 VoIP 시스템 설계)

  • Ming, Li;Kim, Young-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.459-461
    • /
    • 2010
  • Ad-Hoc VoIP system is an important IP phone technique used in MANET networks. In small-scale networks, VoIP system could be built easily while keeping the Qos on a acceptable level. Although Ad-Hoc VoIP system is designed as 'Client-Server' model, due to the property of MANETs that no Base Stations working as servers, we have the SIP Server with promary funtions worked on mobile terminals instead. In this paper, we explored how to build VoIP systems in MANETs and achieved the construction from within linux.

  • PDF

Antioxidative Effects and Anti-proliferative Effects of MeOH, BuOH and Ethyl Acetate Fractionated from Stephania delavayi Diels (일문전(Stephania delavayi Diels.) 메탄올, 부탄올, 에틸아세테이트 분획물의 항산화 및 세포증식억제 효과)

  • Li, Yong-Chun;Kim, Kyoung-Hee;Xu, Hong-De;Park, Dae-Hun;Choi, Yeon-Shik;Hwang, Hye-Rim;Lee, Min-Jae;Choi, Jong-Jin;Kwon, Myung-Sang;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.3
    • /
    • pp.297-301
    • /
    • 2009
  • Stephania delavayi Diels. (S. delavayi Diels.) has been used as a drug for pain-relieving and acute gastroenteritis treatment in China. Because the major therapeutic mechanism of anti-inflammatory drug is to inhibit the cyclooxygenase (COX)-2 and because COX-2 proteins inhibit apoptosis, COX-2 inhibitor has been thought as the anticancer drug candidate. For this reason, we examined S. delavayi Diels. as an anticancer drug. S. delavayi Diels. was fractionated with methanol and then partitioned with ethyl acetate, n-butanol and water. The antioxidant activity was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and reducing power. DPPH radical scavenging activities of the crude fractions at the concentration of $1,000{\mu}g/mL$ were 75.23% (n-butanol), 68.11% (methanol), 63.58% (ethyl acetate), and 50.13% (water). The reducing power increased according to the concentration in dose-dependent manner. Also, when the antiproliferation effects of each fraction against human breast cancer cell-lines MDA-MB-231 and MCF-7 were examined, methanol extract, n-butanol fraction and ethyl acetate fraction exhibited cell proliferative inhibition effects in both cell-lines whereas water fraction did not. Among the crude fractions, the n-butanol fraction exhibited the most potent anti-proliferation effect. In conclusion, fractions from S. delavayi Diels. are promising anticancer drug candidates.

Multiplex Real-time PCR for RRM1, XRCC1, TUBB3 and TS mRNA for Prediction of Response of Non-small Cell Lung Cancer to Chemoradiotherapy

  • Wu, Guo-Qiu;Liu, Nan-Nan;Xue, Xiu-Lei;Cai, Li-Ting;Zhang, Chen;Qu, Qing-Rong;Yan, Xue-Jiao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4153-4158
    • /
    • 2014
  • Background: This study was aimed to establish a novel method to simultaneously detect expression of four genes, ribonucleotide reductase subunit M1(RRM1), X-ray repair cross-complementing gene 1 (XRCC1), thymidylate synthase (TS) and class III ${\beta}$-tubulin (TUBB3), and to assess their application in the clinic for prediction of response of non-small cell lung cancer (NSCLC) to chemoradiotherapy. Materials and Methods: We have designed four gene molecular beacon (MB) probes for multiplex quantitative real-time polymerase chain reactions to examine RRM1, XRCC1, TUBB3 and TS mRNA expression in paraffin-embedded specimens from 50 patients with advanced or metastatic carcinomas. Twenty one NSCLC patients receiving cisplatin-based first-line treatment were analyzed. Results: These molecular beacon probes could specially bind to their target genes in homogeneous solutions. Patients with low RRM1 and XRCC1 mRNA levels were found to have apparently higher response rates to chemoradiotherapy compared with those with high levels of RRM1 and XRCC1 expression (p<0.05). The TS gene expression level was not significantly associated with chemotherapy response (p>0.05). Conclusions: A method of simultaneously detecting four molecular markers was successfully established and applied for evaluation of chemoradiotherapy response. It may be a useful tool in personalized cancer therapy.

Identification of genomic diversity and selection signatures in Luxi cattle using whole-genome sequencing data

  • Mingyue Hu;Lulu Shi;Wenfeng Yi;Feng Li;Shouqing Yan
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.461-470
    • /
    • 2024
  • Objective: The objective of this study was to investigate the genetic diversity, population structure and whole-genome selection signatures of Luxi cattle to reveal its genomic characteristics in terms of meat and carcass traits, skeletal muscle development, body size, and other traits. Methods: To further analyze the genomic characteristics of Luxi cattle, this study sequenced the whole-genome of 16 individuals from the core conservation farm in Shandong region, and collected 174 published genomes of cattle for conjoint analysis. Furthermore, three different statistics (pi, Fst, and XP-EHH) were used to detect potential positive selection signatures related to selection in Luxi cattle. Moreover, gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were performed to reveal the potential biological function of candidate genes harbored in selected regions. Results: The results showed that Luxi cattle had high genomic diversity and low inbreeding levels. Using three complementary methods (pi, Fst, and XP-EHH) to detect the signatures of selection in the Luxi cattle genome, there were 2,941, 2,221 and 1,304 potentially selected genes identified, respectively. Furthermore, there were 45 genes annotated in common overlapping genomic regions covered 0.723 Mb, including PLAG1 zinc finger (PLAG1), dedicator of cytokinesis 3 (DOCK3), ephrin A2 (EFNA2), DAZ associated protein 1 (DAZAP1), Ral GTPase activating protein catalytic subunit alpha 1 (RALGAPA1), mediator complex subunit 13 (MED13), and decaprenyl diphosphate synthase subunit 2 (PDSS2), most of which were enriched in pathways related to muscle growth and differentiation and immunity. Conclusion: In this study, we provided a series of genes associated with important economic traits were found in positive selection regions, and a scientific basis for the scientific conservation and genetic improvement of Luxi cattle.