• Title/Summary/Keyword: MHD system

Search Result 55, Processing Time 0.025 seconds

Where is the coronal loop plasma located, within a flux rope or between flux ropes?

  • Lim, Daye;Choe, G.S.;Yi, Sibaek
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.66.3-67
    • /
    • 2015
  • Without scrutinizing reflection, the plasma comprising a coronal loop is usually regarded to reside within a flux rope. This picture seems to have been adopted from laboratory plasma pinches, in which a plasma of high density and pressure is confined in the vicinity of the flux rope axis by magnetic tension and magnetic pressure of the concave inward magnetic field. Such a configuration, in which the plasma pressure gradient and the field line curvature vector are almost parallel, however, is known to be vulnerable to ballooning instabilities (to which belong interchange instabilities as a subset). In coronal loops, however, ideal MHD (magnetohydrodynamic) ballooning instabilities are impeded by a very small field line curvature and the line-tying condition. We, therefore, focus on non-ideal (resistive) effects in this study. The footpoints of coronal loops are constantly under random motions of convective scales, which twist individual loop strands quite randomly. The loop strands with the axial current of the same direction tend to coalesce by magnetic reconnection. In this reconnection process, the plasma in the loop system is redistributed in such a way that a smaller potential energy of the system is attained. We have performed numerical MHD simulations to investigate the plasma redistribution in coalescence of many small flux ropes. Our results clearly show that the redistributed plasma is more accumulated between flux ropes rather than near the magnetic axes of flux ropes. The Joule heating, however, creates a different temperature distribution than the density distribution. Our study may give a hint of which part of magnetic field we are looking to in an observation.

  • PDF

The Electronic Ballast of HID (High Intensity Discharge) Lamp using internal resonance (내부 공진을 이용해 점등하는 메탈할라이드 고압방전등 전자식 안정기)

  • Cho B. C.;Moon S. J.;Lee I. K.;Cho B. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.580-583
    • /
    • 2001
  • A high ignition voltage is required for the metal halide (MHD) lamp. In this paper, the ballast ignited by internal LC resonance of buck converter with minimum size is proposed. For minimizing the ignition current for device safety, the characteristic impedance is maximized. But this results In a large steady state ripple, which may cause the accoustic resonance. The steady state ripple cancellation network using the coupled inductor is proposed.

  • PDF

The high Efficiency Ballast for MHD Lamp with a Frequency Controlled Synchronous Rectifier (주파수 가변 동기 정류기를 이용한 고효율 MHD 램프 안정기)

  • Hyun B.C.;Lee I.K.;Cho B.H.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.356-362
    • /
    • 2005
  • In this paper, in order to develop a simple and high efficient ballast without an external ignitor, a half-bridge type ballast with a coupled inductor and a frequency controlled synchronous rectifier is proposed. The Internal LC resonance of the buck converter is used to generate a high voltage pulse for the ignition, and the coupled inductor filter is used for steady state ripple cancellation. Also, a synchronous buck converter is applied for the DC/DC converter stage. In order to improve the efficiency of the ballast, a frequency control method is proposed. This scheme reduces a circulation current and trun off loss of the MOSFET switch on the constant power operation, which results in increase of the efficiency of the ballast system about 4$\%$, compared to a fixed frequency control. It consists a 2-stage version ballast with a PFC circuit. The results are verified nth hardware experiments.

Numerical Investigation of Cross- Flow of a Circular Cylinder Under an Electromagnetic Force (전자기력을 이용한 유동제어에 관한 수치해석적 연구)

  • Kim, Seong-Jae;Lee, Choung-Mook
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.148-153
    • /
    • 2001
  • A computational investigation of the effect of the electromagnetic force(or Lorentz force) on the flow behavior around a circular cylinder, a typical model of bluff bodies, is conducted. Two-dimensional unsteady flow computation for $Re=10^2$ is carried out using a numerical method of finite difference approximation in a curvilinear body-fitted coordinate system by solving the momentum equations including the Lorentz force as a body force. The effect of the spatial variations of the Lorentz forcing region and forcing direction along the cylinder circumference is investigated. The numerical results show that the Lorentz force can effectively suppress the flow separation and oscillation of the lift force of the circular cylinder cross-flow, leading to the reduction of the drag.

  • PDF

ON THE RELATIONSHIP BETWEEN SUBSTORM CURRENT SYSTEM AND BURSTY BULK FLOWS AT NEAR TAIL (서브스톰 전류계와 BBF 사이의 관계에 대하여)

  • LEE DAE-YOUNG;MIN KYOUNG WOOK
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.53-56
    • /
    • 2000
  • We investigate the critical issue on how the BBF (bursty bulk flow) is related to the substorm current wedge formation. Observationally, after analysing data sets from Geotail spacecraft at near tail and many ground magnetic observatories for 9 months period of 1996, we find three BBF events that clearly occurred at the center of the wedge with region I type FAC (field-aligned current), and two other BBF events that were seen outside the wedge sector. Theoretically, we suggest that the substorm current wedge generation by BBF is most likely when the h' VB contribution is dominant in the well-known MHD $J_{II}$ expression (Vasyliunaus, 1984) or when the divergence of the cross-tail current carried by the particle's gradient/curvature drift is predominantly sufficient at the moment of the BBF arrival at near tail.

  • PDF

A Study on the Two-dimensional Formation Control of Free Surface of Magnetic Fluid by Electromagnetic Force (전자기력에 의한 자성유체의 2차원 자유표면 형상 제어에 관한 연구)

  • Bae Hyung-Sub;Yang Taek-Joo;Lee Yuk-Hyung;Joo Dong-Woo;Park Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.29-37
    • /
    • 2005
  • In this study, the control of the free surface deformation of a magnetic fluid for the change in electromagnetic force is discussed. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. Magnetic fluid in characteristics of fluid adjusted to the opposite direction of the gravity direction. Thus, the device of a magnetic fluid proposed the complete zero-leakage sealing, oscillator for surface control, boundary layer control, MHD, flow control, flow using magnetic levitation system and surface actuator. This study show the deformation of surface rise due to the intensity of the magnetic field and possibility of two-dimensional control of magnetic fluid through the feedback data of hall sensor.

Numerical Investigation of Cross-Flow Around a Circular Cylinder at a Low-Reynolds Number Flow Under an Electromagnetic Force

  • Kim, Seong-Jae;Lee, Choung-Mook
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.363-375
    • /
    • 2002
  • The effect of the electromagnetic force (or Lorentz force) on the flow behavior around a circular cylinder is investigated by computation. Two-dimensional unsteady flow computation for Re=10$^2$is carried out using a numerical method of finite difference approximation in a curvilinear body-fitted coordinate system by solving the momentum equations including the Lorentz force as a body force. The effect of spatial variations of the Lorentz forcing region and forcing direction along the cylinder circumference is investigated. The numerical results show that the Lorentz force can effectively suppress the flow separation and oscillation of the lift force of circular cylinder cross-flow, leading to reduction of drag.

Magnetic Fields of the Youngest Protostellar System L1448 IRS 2 revealed by ALMA

  • Kwon, Woojin;Stephens, Ian W.;Tobin, John J.;Looney, Leslie W.;Li, Zhi-Yun;Crutcher, Richard M.;Kim, Jongsoo;van der Tak, Floris F.S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.44.3-45
    • /
    • 2018
  • Magnetic fields affect star formation in a broad range of scales from parsec to hundreds au. In particular, interferometric observations and ideal magneto-hydrodynamic (MHD) simulations have reported that formation of a rotation-supported disk at the earliest young stellar objects (YSOs) is largely suppressed by magnetic fields aligned to the rotational axis of YSOs: magnetic braking. Our recent ALMA observations toward L1448 IRS 2, which has a rotation detected and its magnetic fields aligned to the rotation axis (poloidal fields) in ~500 au scales, show that the fields switch to toroidal at the center in ~100 au scales. This result suggests that magnetic braking may not be so catastrophic for early disk formation even in YSOs with magnetic fields aligned to the rotational axis.

  • PDF

The State of the Art on Propulsion System for Submarine (잠수함 추진체계 기술현황)

  • 공영경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.1-17
    • /
    • 1994
  • 잠수함추진방식은 크게 원자력 추진과 재래식 추진으로 나눌수 있다. 최근에는 재래식 추진방식과 하이브리드 개념으로 운용될 수 있는 AIP(Air Independent Propulsion)방식도 활발히 연구되고 있다. AIP추진으로는 폐회로 디젤기관추진(Closed Cycle Diesel Engine Propulsion), 연료전지추진(Fuel Cell Propulsion), 스터링기관추진(Stirling Engine Propulsion) 및 폐회로터빈추진(Closed Cycle Turbin Propulsion) 등이 있다. 이러한 잠수함 추진체계에 대해 앞으로 크게 세부분으로 나누어 그 현황과 발전추세를 살펴보고자 한다. 즉, 초기의 순수전기추진방식으로 불리는 재래식 추진체계, 재래식 추진방식의 한계를 극복하기 위해 최근 활발히 연구되고 있는 외기와 무관한 추진장치인 폐회로 추진체계, 그리고 궁극적으로는 에너지의 문제로 귀착되어 거의 무한대의 에너지원을 가지고 있는 원자력 추진체계로 구분하여 그 현황과 발전내용을 살펴 봄으로써 잠수함추진체계의 국내연구 개발방향정립에 조금이나마 보탬이 되었으면 합니다. 또한 차세대 추진장치로 불리는 전자유체 추진방식에 대해서는 한국박용기관 학회지 1993년 4월호 "박용전자유체(MHD) 추진장치"를 참조하시기 바랍니다.조하시기 바랍니다.

  • PDF

Magnetic Design of the KT-2 Tokamak for "Advanced Tokamak" Studies

  • Lee, Kwang-Won;B. G. Hong;S. R. In;J. M. Han;B. J. Yoon;Kim, S. K.;Lee, Jae-Koo;Kim, Dong-Eon;Y. K. Ra
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.1033-1039
    • /
    • 1995
  • The magnetic system design of the KT-2 tokamak has been performed at KAERI. Design goal has been set to facilitate the so-called "advanced tokamak" studies, which is essential to secure the economy of the tokamak fusion reactors. Design features include a large-aspect-ratio machine configuration, long-pulse operation capability with heavy plasma shaping, hybrid magnetic field control and machine/in-vacuum structures for MHD stability.

  • PDF