• Title/Summary/Keyword: MHD flow

Search Result 94, Processing Time 0.03 seconds

INFLUENCE OF SLIP CONDITION ON RADIATIVE MHD FLOW OF A VISCOUS FLUID IN A PARALLEL POROUS PLATE CHANNEL IN PRESENCE OF HEAT ABSORPTION AND CHEMICAL REACTION.

  • VENKATESWARLU, M.;VENKATA LAKSHMI, D.;DARMAIAH, G.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.333-354
    • /
    • 2016
  • The present investigation deals, heat and mass transfer characteristics with the effect of slip on the hydromagnetic pulsatile flow through a parallel plate channel filled with saturated porous medium. Based on the pulsatile flow nature, exact solution of the governing equations for the fluid velocity, temperature and concentration are obtained by using two term perturbation technique subject to physically appropriate boundary conditions. The expressions of skin friction, Nusselt number and Sherwood number are also derived. The numerical values of the fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. By increasing the slip parameter at the cold wall the velocity increases whereas the effect is totally reversed in the case of shear stress at the cold wall.

Investigation on the heat transfer of MHD nanofluids in channel containing porous medium using lattice Boltzmann method

  • Xiangyang Liu;Jimin Xu;Tianwang Lai ;Maogang He
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.191-201
    • /
    • 2023
  • In order to develop better method to enhance and control the flow and heat transfer inside the radiator of electronic device, the synergistic effect of MHD nanofluids and porous medium on the flow and heat transfer in rectangular opened channel is simulated using Lattice Boltzmann method. Three nanofluids of CuO-water, Al2O3-water and Fe3O4-water are studied to analyze the influence of the type of nanofluid on the synergistic effect. The simulation results show that the porous medium can increase the flow velocity in fluid zone adjacent to the porous medium and enhance the heat transfer on the surface of the channel. Under no magnetic field, when the porosity of porous medium is 0.8, the Nusselt number is 4.46% higher than when the porosity is 0.9. Al2O3-water has the best heat transfer effect among the three nanofluids. At Ф=0.06, Ha=100, θ=90°, ε=0.9, Nu of Al2O3-water is 6.51% larger than that of CuO-water and 5.05% larger than that of Fe3O4-water. Magnetic field enhances seepage in porous medium and inhibits heat transfer in the bottom wall. When Ha=30 and 60, the inhibiting effect is the most significant as the magnetic field angle is 90°. And when Ha=100, the inhibiting effect is the most significant as the magnetic field angle is 120°.

A Study on the MHD Micropump with Mixing Function (혼합 기능을 갖는 마이크로 펌프의 연구)

  • Choi, Bum-Kyoo;Kang, Ho-Jin;Kim, Min-Sock
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.579-586
    • /
    • 2010
  • With the development of micrototal analysis systems (${\mu}TAS$), which is a result of enhancement of MEMS technology, rapid progress has been achieved in medical and biological research. The study of lab-on-a-chip (LOC) devices, which are types of ${\mu}TAS$ and which integrate the functions of mixing and analyzing tiny amounts of samples and reagents on one chip, has actively progressed. An LOC comprises microfluidic components such as micromixers and micropumps. Because the flow in a microfluidic system is generally laminar, it is very difficult to efficiently mix and feed fluid reagents. This paper presents the design and the method of fabrication of an MHD micropump for mixing fluids. By using this micropump, fluids are simultaneously mixed and pumped; this is achieved by coupling the Lorentz force and force exerted by an electric charge moving in an electric field.

A self-consistent model for the formation and eruption of a solar prominence

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.47.2-47.2
    • /
    • 2021
  • The present study is focused on origins of the flow and magnetic structure involved in the formation and eruption of a solar prominence. To clarify them, we performed an MHD simulation based on the 3-dimensional emerging flux tube (3DEFT) model, in which self-consistent evolution of a flow and magnetic field passing freely through the solar surface was obtained by seamlessly connecting subsurface dynamics with surface dynamics. By analyzing Lagrangian displacements of magnetized plasma elements, we demonstrate the flow structure which is naturally incorporated to the magnetic structure of the prominence formed via dynamic interaction between the flow and magnetic field.

  • PDF

Characteristic study of heat transfer of laminar impinging jet in an aligned magnetic field (자기장이 인가된 영역에서의 층류 충돌제트의 열전달특성 변화에 대한 수치적 연구)

  • Lee, Hyun-Goo;Ha, Man-Yeong;Yoon, Hyun-Sik;Chun, Ho-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1447-1451
    • /
    • 2004
  • The laminar impinging jet thermal fields were investigated with or without magnetic fields. The transient phenomenon from steady to unsteady flow was founded at specific Reynolds number ranges. In unsteady flow region, the magnetic fields make flow stable. So the characteristics of heat transfer at impingement wall are changed

  • PDF

3D SIMULATIONS OF RADIO GALAXY EVOLUTION IN CLUSTER MEDIA

  • O'NEILL SEAN M.;SHEARER PAUL;TREGILLIS IAN L.;JONES THOMAS W.;RYU DONGSU
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.605-609
    • /
    • 2004
  • We present a set of high-resolution 3D MHD simulations exploring the evolution of light, supersonic jets in cluster environments. We model sets of high- and low-Mach jets entering both uniform surroundings and King-type atmospheres and propagating distances more than 100 times the initial jet radius. Through complimentary analyses of synthetic observations and energy flow, we explore the detailed interactions between these jets and their environments. We find that jet cocoon morphology is strongly influenced by the structure of the ambient medium. Jets moving into uniform atmospheres have more pronounced backflow than their non-uniform counterparts, and this difference is clearly reflected by morphological differences in the synthetic observations. Additionally, synthetic observations illustrate differences in the appearances of terminal hotspots and the x-ray and radio correlations between the high- and low-Mach runs. Exploration of energy flow in these systems illustrates the general conversion of kinetic to thermal and magnetic energy in all of our simulations. Specifically, we examine conversion of energy type and the spatial transport of energy to the ambient medium. Determination of the evolution of the energy distribution in these objects will enhance our understanding of the role of AGN feedback in cluster environments.

EFFECTS OF RADIATION AND HEAT GENERATION ON MHD AND PARABOLIC MOTION ON CASSON FLUIDS FLOW THROUGH A ROTATING POROUS MEDIUM IN A VERTICAL PLATE

  • J. PRAKASH;A. SELVARAJ
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.607-623
    • /
    • 2024
  • This article studies the effects of heat generation/absorption and thermal radiation on the unsteady magnetohydrodynamic (MHD) Casson fluid flow past a vertical plate through rotating porous medium with constant temperature and mass diffusion. It is assumed that the plate temperature and concentration level are raised uniformly. For finding the exact solution, a set of non-dimensional partial differential equations is solved analytically using the Laplace transform technique. The influence of various non-dimensional parameters on the velocity are discussed, including the effects of the magnetic parameter M, heat generation/absorption Q, thermal radiation parameter R, Prandtl number Pr, Schmidt number Sc, permeability of porous medium parameter, Casson fluid parameter γ, on velocity, temperature, and concentration profiles, which are discussed through several figures. It is found that velocity, temperature, and concentration profiles in the case of heat generation parameter Q, Casson fluid parameter γ, thermal Grashof number Gr, mass Grashof number Gc, Permeability Porous medium parameter K, and time t have retarding effects. It is also seen that the magnetic field M, Thermal Radiation parameter R, Prandtl field Pr, Schmidt number Sc have reverse effects on it.

The Study of the Electroconductive Liquids Flow in a Conduction Magnetohydrodynamic Pump

  • Naceur, Sonia;Kadid, Fatima Zohra;Abdessemed, Rachid
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.252-256
    • /
    • 2016
  • This paper deals the study of a linear MHD pump solution used to eliminate and to avoid the dangers of the mercury appearing through pollution and contamination. The formulation of the magnetohydrodynamic phenomena is derived from Maxwell and Navier-Stokes equations are solved using the finite volume method. Simulation results highlight the performance of the pump such as the electromagnetic force, the velocity, and the pressure, the application of Ansys-Fluent software validation these results.